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We present an extended QSPR modeling of solubilities of about 500 substances in series of up to 69 diverse
solvents. The models are obtained with our new software package, CODESSA PRO, which is furnished
with an advanced variable selection procedure and a large pool of theoretically derived molecular descriptors.
The squared correlation coefficients and squared standard deviations (variances) range from 0.837 and 0.1
for 2-pyrrolidone to 0.998 and 0.02 for dipropyl ether, respectively. The predictive power of the models
was verified by using the “leave-one-out” cross-validation procedure. The QSPR models presented are suitable
for the rapid evaluation of solvation free energies of organic compounds.

BACKGROUND TO THE PRESENT SERIES OF PAPERS

Solubility is of the utmost significance in numerous areas
of human endeavor and interest. Solubility in water is
fundamental to environmental issues such as pollution,
erosion, and mass transfer. Solubility in organic solvents
forms much of the basis of the chemical industry. Solubility
determines shelf life and cross contamination. It is critically
linked to bioavailability and thus to the effectiveness of
pharmaceuticals, biodegradation, suitability of gaseous an-
esthetics, blood substitutes, oxygen carriers, etc. Toxicity is
critically dependent on solubility.

Very extensive studies have been carried out on the
solubilities of various solute-solvent pairs resulting in
diverse theories of solute-solvent interactions that form the
basis of our knowledge for the understanding of solubility.1

These theories are based on concepts ranging from quantita-
tive analysis to statistical mechanics and quantum mechanics.
Quantitative treatments of solute-solvent interactions in
series of compounds have gained wide attraction and have
led to various models for explaining solute-solvent behav-
ior.2 Most of this work has involved studying a series of
solutes dissolved in a single solvent. There are some instances
in which the solubilities of a solute in a series of solvents
have been examined, as reviewed elsewhere.3,4 Many of the
previous studies provide valuable contributions to the

understanding of the general phenomena of solute-solvent
interactions. In depth comparisons of published data series
have revealed that many gaps exist, which render impossible
any general comparison of solvent-solute pairs utilizing only
experimental data. Therefore we have proposed the combina-
tion of quantitatiVe structure-property/actiVity relationship
analysis and subsequentprincipal component analysisfor
the general treatment of solubility.5

A common procedure in quantitative structure-property/
activity relationships (QSPR/QSAR) analysis is the applica-
tion of variable selection methods such as stepwise forward
selection,6,7 genetic algorithms,8,9 and simulated annealing10,11

for the reduction of descriptor space in order to keep the
only most influential descriptors for the prediction of a
property (in the present instance solubility). In this first
version of our general treatment of solubility we are still
using QSPR (applying forward selection of descriptors
scales) essentially as a “black box” method to be able to fill
gaps in the experimental data by prediction of the missing
values. We are aware that QSPR approaches based on
theoretical whole-molecule descriptors and variable selection
procedures are sometimes criticized because of difficulties
in their physical interpretation.12,13We also acknowledge that
a rigorous physical interpretation of the quantitative structure-
activity relationships that we have derived is not yet possible.

After predicting missing values to provide a continuous
data matrix, we plan to further analyze the matrix with
principal component analysis in order to disclose general
regularities within the solute-solvent pairs. In this way, it
may be possible to derive the intrinsic dimensionality of the
general solubility phenomenon and to reveal important
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constitutional and structural factors responsible for the
solvation behavior of chemicals. Such an analysis is of
interest and importance both from the theoretical and the
applied points of view because most physiological and
technological processes occur in solvent media, and solvents
exert strong influences on the rates and even directions of
these processes.14

The current paper is the first in a series of publications
comprising a general treatment of solubility. It initially
develops solubility scales for 69 solvents with 14 or more
solutes in each of the 69 scales.

INTRODUCTION

Various research groups have treated two basic types of
solubility. Bulk solubility, expressed in terms of concentra-
tion (molarity), has been addressed inter alia by Jurs,15

Yalkowsky,16 and Acree.17 More generally, solubility can be
considered primarily as a partition characteristic and be
treated as the ratio of the liquid- and gas-phase molar
concentrations of the solute. Contributions from Abraham,18

and some our previous work,19 used the logarithms of gas-
solvent or water-solvent partition coefficients, logL and
log P, respectively. Here,L is the Ostwald solubility
coefficient and is usually written in its logarithmic form (eq
1).

The use of partition characteristics seems to be the
preferable approach because it explicitly addresses the
existence of a vapor-liquid equilibrium and allows solubility
to be expressed on the energy scale as the relative free energy
of solvation (∆GS). At equilibrium conditions and constant
temperature, the solvation free energy,∆GS (the work taken
to transfer one mole of a solute from the gas phase to the
solution), is equal to the product of-RT and logL. If one
chooses standard states of unit concentration in the gas phase
and in solution,∆GS is related to the logarithm of the Ostwald
solubility coefficient by eq 2.

Solvation free energies have been extensively modeled by
the groups of Politzer,2 Cramer and Truhlar,20 Jorgensen,21

and Wendoloski.22 In the present study we use the energy
scale of solubility because such a representation of solubility
and related phenomena is more appropriate for a wide
audience in the fields of QSAR/QSPR, biomolecular simula-
tions, and organic reactivity modeling.

Computational Chemistry Approaches.Modern science
proposes rational explanations of the macroscopic solubility
phenomenon based on the microscopic properties of matter.
Statistical mechanics rigorously links these two realms
through the probabilistic treatment of particle ensembles. The
application of Kirkwood’s continuum solvent approach23 to
nondissociating fluids resulted in a variety of simulation
techniques: the most popular are molecular dynamics (MD)
and the Monte Carlo (MC) method.24

These techniques can provide theoretical characteristics
of solutes, which are useful in liquid-phase equilibria
calculations and lead to the prediction of solvation free
energies and the effects that a solvent exerts on chemical
equilibrium and rates. Recent applications of the such
techniques include the work of Duffy and Jorgensen21 who
predicted the solvation free energies of 68 organic substances
in hexadecane (squared correlation coefficientR2 ) 0.90,
unsigned mean error|∆| ) 0.33 kcal/mol), 85 substances in
wet octanol (R2 ) 0.87, |∆| ) 0.52 kcal/mol), and 85
substances in water (R2 ) 0.89,|∆| ) 0.54 kcal/mol) using
MC simulation-derived descriptors.

A conceptually similar but methodologically different
approach was developed by Murrey et al.25 who correlated
the aqueous solvation free energies of 50 organic compounds
with some molecular electrostatic potential (MEP)-derived
descriptors (R2 ) 0.988,|∆| ) 0.27 kcal/mol).

The explicit inclusion of solvation free energy into the
framework of the MO SCF method initiated self-consistent
reaction field implementations at the semiempirical26,27 and
ab initio levels.28-30 Practical advances in the prediction of
solvation free energies of organic compounds in water and
about 90 nonaquaeous solvents were reached by Cramer and
Truhlar. They included a set of empirical parameters in their
SM.x semiempirical solvation models20,31 that accounts
implicitly for the effects of the first solvation shell. Unsigned
mean errors of their calculations for the solvation free
energies of 275 neutral solutes in 91 solvents range from
0.43 to 0.46 kcal/mol.

In more recent work32 Torrens provides a semiquantitative
approach to estimate solvation free energy. The method is
an extension of solvent-dependent conformational analysis
and uses the dielectric constant and molecular volume to
describe solvent.

The above-mentioned methods, using theoretical tools
from the arsenal of computational and quantum chemistry,
allow the derivation of rather accurate values of solvation
free energies, but these methods are time-consuming and can
hardly be applied to the solubility modeling of large
biomolecules or to the large-scale modeling of many
hundreds of small molecules.

QSAR/QSPR Approaches.Several less sophisticated, but
also much less time-consuming, methods based on QSAR/
QSPR methodology have been developed recently for the
prediction of solvation free energies and for the derivation
of partitioning characteristics. This family of methods can
be divided into two groups: (i) methods using experimental
quantities as descriptors and (ii) those based on purely
theoretical descriptors.

Experiment-Based QSAR/QSPR. The linear solVation
energy relationships(LSER) method is based on multilinear
regression (MLR) analysis of the solubilities of solutes in
different solvents expressed in the form of different solvent
polarity scales or solvatochromic parameters. This method,
originally developed by Kamlet and Taft,33,34has been further
evolved and applied by Abraham and co-workers18 and
applied to numerous solubility and partitioning problems.

The LSER MLR model includes several characteristics
(descriptors) that are used to describe the solvent/solute
polarizability, dipolarity, volume, hydrogen bond acidity, and
hydrogen bond basicity. The strength of the approach relies
on combining all these characteristics into a single model,

log L ) log (Cl

Cg
) (1)

∆GS ) -2.3RTlog L ) -2.3RTlog (Cl

Cg
) (2)
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thus providing a sound basis to discuss solute-solvent
interactions and also the ability to rank each type of
interaction for every solute-solvent pair. A limitation is that
the characteristics used in the model, which originate from
experimental measurements, are often unavailable or incom-
plete when working with diverse compounds within large
databases.

Reliable LSER models were obtained for water35 (R2 )
0.998 and standard deviation,s ) 0.151) and several
nonaqueous solvents. The Ostwald solubility coefficient of
77 gases and vapors in propan-1-ol at 298 K36 were correlated
with modified five LSER descriptors givingR2 ) 0.998 and
standard deviation,s ) 0.12. This equation suggests that
propan-1-ol as a solvent is less dipolar, more acidic, and
less basic than methanol or ethanol, but that the differences
between the three alcohols are small.

The same model was also used to compare a series of
aliphatic alcohols: butan-1-ol, pentan-1-ol, hexan-1-ol, hep-
tan-1-ol, and decan-1-ol.37 For 92 solutes in butan-1-ol the
R2 value was 0.9966 (s ) 0.158), for 61 solutes in pentan-
1-ol theR2 value was 0.999 (s ) 0.076), for 46 solutes in
hexan-1-ol theR2 value was 0.9996 (s ) 0.089), for 38
solutes in hepan-1-ol theR2 value was 0.9998 (s ) 0.0670),
and for 45 solutes in decan-1-ol theR2 value was 0.9996 (s
) 0.090).

Abraham and his collaborators have used LSER methodol-
ogy to analyze 150 values of gas-chloroform partition
coefficients, resulting in a standard deviation of 0.23 log units
and a correlation coefficientR2 of 0.985.38 Based on the
equation, they conclude that bulk chloroform (i) is dipolar/
polarizable, (ii) has low hydrogen-bond basicity, (iii) is as
strong a hydrogen-bond acid as bulk methanol or bulk
ethanol, and (iv) exerts its main influence on gaseous
solubility by solute-solvent London dispersion interactions.
Other solvents studied by Abraham and co-workers include
the following: N-methylpyrrolidone,N,N-dimethylforma-
mide,N,N-dimethylacetamide,39 and methylene iodide.40

The Mobile Order Theory (MOT) approach, originally
developed by Huyskens41 and widely applied by Acree and
co-workers,17 is based on a thermodynamic treatment of the
liquid state. It includes terms to describe the effects that
solute-solvent, solvent-solvent, and solute-solute interac-
tions have on the chemical potential of the dissolved solute.
MOT assumes that hydrogen-bonded aggregates are formed
temporarily without a distinguishable thermodynamic iden-
tity. Hydrogen-bonded partner associates are not preserved
with time but rather change continuously. The MOT treat-
ment considers equilibria involving the fractions of time
during which an amphiphilic proton is in the hydrogen-
bonded and nonbonded state. This differs from more
conventional thermodynamic approaches that treat equilib-
rium in terms of discrete chemical species. Depending upon
the functional groups present on the solute and solvent
molecules, the MOT predictive expression may contain up
to six terms and require a priori knowledge of several input
stability constants before a prediction can be made. The
predictions obtained by MOT approach for solubilities of
many solutes in nonelectrolyte solvents will be discussed in
more detail in part 2 of the present series.42

Another approach to the prediction of aqueous solubility
involving experimentally derived entities was provided by
Yalkowsky et al.16 The so-called General Solubility Equation

of Yalkowsky includes two experimental parameters: the
melting point of the solute and its octanol-water partition
coefficient (logP). The aqueous solubilities of 150 physi-
ologically active compounds were estimated with an unsigned
mean error of 0.43 molarity units (logS).

Theory-Based QSAR/QSPR. These approaches exploit two
different paradigms. One involves the derivation of various
molecular characteristics (descriptors) solely from molecular
structure.43 Depending on the level of consideration, one can
use simple constitutional features (numbers of atoms or bonds
of a particular class), topological indices,44 geometric,
electrostatic, quantum chemical, and thermodynamic descrip-
tors.45,46Another popular paradigm of QSPR modeling relies
on the concept of the structural additivity of properties.
According to this hypothesis, any property in the form of a
continuous smooth function can be expanded into a linear
function in some predefined structural features such as atoms,
bonds, chemically relevant groups, and larger fragments of
the molecules. Such fragment-based methods are effectively
generalizations of the use of constitutional descriptors.

Quantitative structure-property relationships for the solu-
bilities of gases and vapors in water,19 in methanol, and in
ethanol47 have been presented in two of our recent publica-
tions. For water, we showed that the solubilities of a diverse
set of 406 gases and vapors in water could be correlated
with a five-parameter equation withR2 ) 0.942. In methanol,
the solubilities of 87 gases and vapors gave a four-parameter
equation (R2 ) 0.945, R2

cv ) 0.938) that adequately
accounted for the solute-solvent interactions in terms of
polarizability, dipole moment, hydrogen bonding, and lipo-
philicity.47 The solubilities in ethanol of 61 gases and vapors
also yielded a four-parameter equation (R2 ) 0.969,R2

cv )
0.964), where the solute-solvent intercorrelations, similar
to methanol, include electrostatic and hydrogen-bonding
interactions.47 The descriptors in each of these three models
are all derived solely from the chemical structures and do
not require any experimental data.

Jurs and co-workers exploit a similar approach to correlate
aqueous solubility (in molarity units) with molecular structure
using both MLR and artificial neural networks (ANN).48

Their MLR model resulted inR2 ) 0.965 ands ) 0.638
mol/dm3, whereas the ANN model provideds ) 0.394 mol/
dm3 for the training set of 295 compounds andR2 between
the experimental and predicted values being 0.987. Applying
ANN methodology and electrotopological state descriptors,
Tetko and Villa49 predicted aqueous molar solubilities of
1291 organic compounds withR2 ) 0.910 ands) 0.62 mol/
dm3. Huuskonen50,51reported that the ANN approach applied
to aqueous solubility gave better predictive models as
compared to MLR.

Fragment-based or group contribution schemes have been
actively pursued by the groups of Klopman52,53 and Wen-
doloski.22,54The most frequently occurring chemical groups
are considered and, using information from the theory of
functions of a complex variable, Klopman et al. derived
contribution coefficients for many groups and successfully
correlated them with the aqueous solubilities of 1168 organic
compounds (R2 ) 0.95, |∆| ) 0.5 log S). The additive-
constitutive approach of Wendoloski et al.22 took the form
of two predictive models: (i) the method of molecular
holograms (HLOGS) counts molecular substructures and uses
them as variables in a partial least-squares regression; (ii)
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the second model, named ALOGS, utilizes the atomic
constant approach including a thorough classification of
atomic types and their contributions. Both models provided
good results:R2 ) 0.941, rms) 0.58 kcal/mol for HLOGS
andR2 ) 0.960, rms) 0.38 kcal/mol for ALOGS.

The successful LSER methodology discussed above was
combined with quantum chemical calculations and found new
realization in thetheoretical linear solVation energy relation-
ship (TLSER) by Famini et al.55,56 In TLSER the experi-
mentally derived solvatochromic parameters were substituted
by semiempirical electronic indices such as partial charges
on certain atoms, HOMO and LUMO energies, etc.

In the present paper, we present a comprehensive database
of solubilities, which was collected from the literature and
from original measurements. We also describe newly de-
veloped methodology for the fast selection of descriptors in
quantitative structure-property (QSPR) analysis. Selected
solvent series are analyzed, and new QSPRs are derived
which will allow the filling of gaps in tables of experimental
solubility values.

DATA

The overall data collected includes 141 solvents and 448
solutes. The number of solutes that the solvents span varies
from 226 for hexadecane to less than 3 for several solvents.
We now report our results on the modeling of 69 of these
solvents, which span from 14 to 226 solutes, with the average
number of solutes per solvent being 48. The remaining 72
solvents have less than 14 experimental points available.

A significant portion of the available molar solubility data
has been either experimentally measured at 25°C or collected
from various sources (see Table 3 of Supporting Information
for references) by one of the authors (W.E.A.). Publications
of Abraham37,57are another important source of information,
especially with solubilities in hexadecane and alcohols.

The inclusion of the experimental data compiled by
Cramer and Truhlar in the framework of their AMSOL
project needed special care because these data originated
basically from liquid-liquid partition measurements, which
implies that the solvents are saturated with water, that is,
“wet” solvents.31 By contrast, the analytical approaches
developed by Abraham and Acree dealt with “dry” solvents.
Nevertheless, as was demonstrated by Abraham et al.,58 the
difference is negligible for those solvents in which little water
is dissolved.

Solubility molarity values (or infinite dilution activity
coefficients) were recalculated, as necessary, for transforma-
tion into the logarithmic Ostwald solubility coefficients (log
L) using eq 1 and then into solvation free energies by eq 2.
The appropriate vapor pressures and density data were used
for this purpose.59 A wide range of solvents was used in our
correlation analysis: inert, polar aprotic, polar protic, and
dipolar aprotic.

QSPR models developed for the 69 solvents are listed in
Table 1 along with the corresponding statistical character-
istics. To build the representative QSPR models, we selected
only those solvents for which at least 14 experimental
solubilities are available.

METHODOLOGY

Each descriptor in the comprehensive set implemented in
the CODESSA PRO software package60 is calculated solely

from molecular structures: directly from the molecular
formula in the case of constitutional and topological descrip-
tors and utilizing the molecular 3D geometry for descriptors
such as geometrical and CPSA (charged partial surface area).
Quantum chemical descriptors are extracted from MOPAC61

output files and include orbital energies and coefficients (and
their combinations), atomic and bond populations, various
components of the MOPAC energy partitioning scheme,
polarizabilities up to second order, dipole moments, and
calculated thermodynamical functions. Computational details
are given in the Experimental Section.

Before outlining and discussing our results, it is critically
important to establish connections between the property
under study and our descriptors. Solvation free energy is
believed to be comprised of four main components1,62,63as
expressed by the general terms in eq 3, where∆GcaVity is the
cavity-formation term,∆Gel is the free energy of electrostatic
interactions,∆Gdisp depicts dispersion interactions, and∆GHB

is the term arising from the hydrogen bond formation. A
more detailed subdivision of the energy contributions is
displayed in Figure 1, together with the five main families
of CODESSA PRO descriptors. The interplay between these
entities is obvious as well as instructive for further discussion
of the QSPR results. Some of the solvation free energy
components are related to several descriptor families. Thus,
the cavity formation term can be satisfactorily modeled with
the use of topological and geometrical descriptors, semiem-
pirically derived molecular polarizability, and entropy.
Electrostatic and quantum chemical descriptors contribute
significantly to the nonspecific solvation through atomic
charges, charged surface areas, dipole moments, reactivity
indices, etc. Specially designed hydrogen bond descriptors
include molecular surface areas that are confined by H-bond
donor or acceptor sites as well as those that merely count
such sites derived from atomic charge considerations. We
conclude that each contribution to the solvation free energy
(at the left of Figure 1) has its corresponding counterpart
among the descriptors. This ensures that all of the main
energy components of a solvation process are covered by
the theoretically derived descriptors of CODESSA PRO, thus
correlations produced with these descriptors should be
substantial.

RESULTS

The correlation results for all the 69 solvents are listed in
two tables, Tables 1 and 2. Each entry of Table 1 provides
statistical characteristics of the chosen QSPR model, includ-
ing the chemical name of a solute, the number (N) of
experimental points used for the correlation, the number of
descriptors (n), the squared correlation coefficient (R2), the
cross-validated squared correlation coefficient (R2

cv), and the
variance or squared standard deviation (s2).

Solvents have been divided into four main classes: (i) inert
solvents (hydrocarbonssaliphatic and aromatic in Tables 1
and 2), which are subdivided into 13 alkanes and 6 aromatic
hydrocarbons with the corresponding halogenated compounds
(3 and 2, respectively) inserted at the end of each section;
(ii) protic solvents represented by 17 alcohols plus water and
a single diol (ethylene glycol); (iii) polar aprotic solvents

∆GS ) ∆GcaVity + ∆Gel + ∆Gdisp + ∆GHB (3)
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are represented by 5 ethers; and (iv) a set of 22 dipolar
aprotic solvents including 3 esters, 4 ketones, 5 amides, 5
nitriles, 2 amines, 1 sulfoxide, 1 nitroalkane, and 1 carbonate
ester.

Table 2 displays the quantitative-structure/activity rela-
tionship equations for all 69 solvents. The equations are
written in a linear notation, and a key to the independent
variables (descriptors) is given in the Discussion section. The
number of descriptors involved in the multiregression
analysis varies from a maximum of 6 for benzene to 2 for
ethylene glycol. Frequency analysis of the descriptors with
respect to the solvents overall is displayed in Figure 2 and
with respect to individual solvent groups in Figure 3.

Tables 3 (Supporting Information) collects all numerical
data on experimental and predicted solubilities in each of
the 69 solvents. Each of these tables contains the unique in-
house ID of a solute, its chemical name, experimental and
predicted solubilitities, and the original literature references
to each solubility value.

DISCUSSION

The overall statistical quality of the QSPR models derived
is satisfactory. The best correlation is a three-parameter
correlation obtained for dipropyl ether (eq 43) on the basis

of 21 experimental data, withR2 ) 0.998,R2
cv ) 0.997, and

s2 ) 0.016; the least satisfactory is a three-parameter
correlation for 2-pyrrolidone, eq 66, characterized byR2 )
0.837, R2

cv ) 0.788, ands2 ) 0.093 (N ) 24). Just two
solvents (2-pyrrolidone and 2-ethyl-1-hexanol) have QSPR
models withR2 less than 0.9. Analysis of the variance,s2,
shows that the predictive ability of the models ranges from
excellent (0.004) in adiponitrile (#54) to admissible (0.608)
in the case of ethanol (#27). Only 12 of the 69 models have
variances greater than the generally accepted 0.4 kcal/mol
value of experimental uncertainty.31 We provide comparisons
with previous theoretical treatments of solubility for those
solvents, for which such data are available. Of the solvents
(other than water) studied in the current work, comprehensive
QSPR studies have been previously conducted only for 11
solvents: hexadecane,64,65 methanol,47,66 ethanol,47,67 1-pro-
panol,36 1-butanol, 1-pentanol, 1-hexanol, 1-heptanol,37 1-oc-
tanol,68 N,N-dimethilacetamide39 and N,N-dimethylforma-
mide.39 For the remaining 57 solvents described below such
work is now carried out for the first time.

The QSPR equations of Table 2 show some general
regularities in the occurrence of descriptors. The frequency
analysis shown in Figure 2 indicates that the contributions
from electrostatic, topological, and hydrogen bonding de-

Table 1. Statistical Quality of QSPR Models

no. solvent N n R2 R2
cv s2 F-crit no. solvent N n R2 R2

cv s2 F-crit

Hydrocarbons: Aliphatic
1 n-pentane 26 4 0.964 0.921 0.046 142 9 methylcyclohexane 16 3 0.943 0.892 0.072 67
2 n-hexane 70 5 0.939 0.922 0.227 196 10 2,2,4-trimethylpentane 45 5 0.972 0.962 0.142 271
3 n-heptane 78 3 0.933 0.926 0.235 343 11 tert-butylcyclohexane 16 3 0.936 0.873 0.081 59
4 n-octane 48 3 0.978 0.969 0.104 640 12 trans-decaline 24 4 0.917 0.866 0.050 53
5 n-nonane 38 5 0.981 0.971 0.106 336 13 squalane 58 5 0.973 0.958 0.080 369
6 n-decane 46 4 0.959 0.944 0.191 240 14 chloroform 107 5 0.907 0.888 0.637 196
7 n-hexadecane 226 5 0.928 0.919 0.186 565 15 carbon tetrachloride 81 4 0.953 0.944 0.183 382
8 cyclohexane 104 6 0.944 0.928 0.269 272 16 1,2-dichloroethane 53 5 0.965 0.949 0.299 257

Hydrocarbons: Aromatic
17 benzene 85 6 0.926 0.905 0.518 162 21 p-xylene 49 5 0.930 0.891 0.458 115
18 toluene 59 5 0.959 0.947 0.264 250 22 ethyl benzene 54 5 0.969 0.956 0.123 297
19 o-xylene 22 3 0.954 0.933 0.457 123 23 chlorobenzene 46 5 0.973 0.959 0.207 289
20 m-xylene 22 3 0.974 0.964 0.367 227 24 bromobenzene 24 4 0.982 0.973 0.029 253

Protic Solvents- Alcohols
25 water 177 5 0.931 0.926 0.340 464 34 3-methyl-1-butanol 15 3 0.965 0.892 0.069 61
26 methanol 92 5 0.932 0.912 0.508 239 35 1-pentanol 25 4 0.924 0.877 0.379 61
27 ethanol 74 3 0.933 0.924 0.608 326 36 4-methyl-2-pentanol 15 3 0.957 0.913 0.073 82
28 1-propanol 66 4 0.965 0.959 0.226 416 37 1-hexanol 19 3 0.914 0.861 0.138 53
29 2-propanol 72 4 0.965 0.955 0.344 459 38 2-ethyl-1-hexanol 15 3 0.878 0.790 0.236 26
30 1-butanol 21 3 0.956 0.914 0.157 123 39 1-heptanol 16 3 0.921 0.839 0.170 46
31 2-butanol 19 3 0.933 0.908 0.109 70 40 1-octanol 173 5 0.942 0.937 0.579 548
32 2-methyl-1-propanol 17 2 0.948 0.929 0.090 128 41 benzyl alcohol 28 3 0.982 0.974 0.073 425
33 2-methyl-2-butanol 15 3 0.948 0.927 0.075 66 42 ethylene glycol 14 2 0.920 0.882 0.611 63

Polar Aprotic Solvents - Ethers
43 dipropyl ether 21 3 0.998 0.997 0.016 2745 46 tetrahydrofuran 55 5 0.982 0.976 0.147 524
44 dibutyl ether 38 4 0.959 0.945 0.299 191 47 1,4-dioxane 54 5 0.965 0.954 0.473 264
45 methyltert-butyl ether 29 2 0.944 0.932 0.342 219

Dipolar Aprotic Solvents
48 methyl acetate 36 4 0.976 0.962 0.220 314 59 acetone 59 5 0.963 0.955 0.437 282
49 ethyl acetate 68 5 0.949 0.925 0.580 230 60 2-butanone 54 5 0.980 0.972 0.131 468
50 butyl acetate 31 4 0.987 0.979 0.060 477 61 cyclohexanone 30 4 0.970 0.961 0.136 205
51 acetonitrile 35 3 0.979 0.973 0.183 478 62 acetophenone 35 4 0.982 0.973 0.189 417
52 1-propanenitrile 31 4 0.984 0.974 0.117 394 63 dimethyl sulfoxide 46 4 0.958 0.937 0.463 229
53 1-butanenitrile 39 5 0.982 0.970 0.104 353 64 aniline 42 5 0.937 0.912 0.426 106
54 adiponitrile 16 3 0.994 0.990 0.004 671 65 pyridine 33 5 0.986 0.975 0.068 391
55 benzonitrile 27 3 0.980 0.974 0.090 385 66 2-pyrrolidone 24 3 0.837 0.788 0.093 34
56 N-methylformamide 33 5 0.974 0.957 0.145 204 67 N-methyl-2-pyrrolidone 16 2 0.994 0.991 0.059 1142
57 N,N-dimethylformamide 52 4 0.990 0.984 0.065 723 68 nitromethane 29 4 0.985 0.974 0.059 401
58 N,N-dimethylacetamide 43 3 0.969 0.959 0.234 410 69 propylene carbonate 28 4 0.917 0.873 0.036 63

1798 J. Chem. Inf. Comput. Sci., Vol. 43, No. 6, 2003 KATRITZKY ET AL .



scriptors are the most important. Geometrical and quantum
chemical descriptors appear to about the same extent,
whereas thermodynamic descriptors occur sparsely. A similar
trend (Figure 3) is found also within the individual classes
of solvents, though within these classes the relative contribu-
tions vary. Thus, the solubilities in both aliphatic and
aromatic hydrocarbon solvents are basically described by
electrostatic and topological descriptors. A possible inter-
pretation is that the highly polarizable hydrocarbon molecules
of the solvent media are sensitive to pertubations from
electrostatic and dispersion interactions. By contrast, other
solubilities are more generally modeled with quantum
chemical and hydrogen bonding descriptors, reflecting the
polar character and hydrogen bond acceptor nature of ethers.
As expected, alcohols are described by topological and
hydrogen bonding descriptors, whereas electrostatic descrip-
tors are the most important for modeling solubilities in
dipolar aprotic solvents.

We wish to emphasize that our objective in formulating
the equations of Table 2 is to allow the estimation of as yet
unmeasured solubilities of solutes in solvents. These esti-
mates are needed to complete the matrix for our principal
component analysis treatment described in part 3 of this
series. Although we have attempted, in the present paper, a
preliminary analysis of the descriptors used in the equations
in terms of physical interactions, we strongly believe that
an improved understanding will be provided when more
appropriate descriptors become available. Efforts in this
direction are ongoing in our laboratories.

Because of the large amount of the results to be discussed,
we have classified them according to solvent classes. A
partial key to the descriptors is given below in the text and
fully in Table 4 (Supporting Information).

Inert Solvents (i) - Alkanes and Chloroalkanes.As
seen in Tables 1 and 2, all the QSPR models for the saturated
inert solvents are characterized by good to excellent statistical
quality with R2 varying from 0.907 for chloroform to 0.981
for n-nonane. The solvation behavior of alkanes as solvents
is revealed from the nature of the relevant descriptors. The
low polarity and chemical inertness of alkanes suggest that
the main contribution to solvation free energy in alkanes
should be cavity-formation and nonspecific solvation terms.
In agreement with this, the Randic topological indices69 of
orders 0 and 1 occur in 7 of the 16 equations.

The Randic index is calculated as a sum of atomic
connectivities over molecular paths of certain length (1, 2,
..., n), it thus reflects molecular size and branching and can
be closely related to the cavity-formation term. Additionally,
the Randic index is an implicit measure of dispersion
interactions, hence in total it reflects the interplay between
two energy terms: (a) the larger the molecular size the
stronger the dispersion interactions; (b) other things being
equal, the more branched a molecule the bigger its effective
radius and thus, the higher the energy cost of the formation
of the cavity.

Molecular descriptors such as the gravitational indices
calculated over all atoms pairs and bonds,Gp and Gb,
respectively, are frequently used in QSPR studies.43 They

Figure 1. Interplay between solvation free energy components and CODESSA descriptors.
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Table 2. Final QSPR Models for Solubility of Different Solutes in 69 Solvents

eq QSPR model

Hydrocarbons: Aliphatic
1 log L ) 9.157- 0.136WNSA(2) + 1.0260CIC + 0.567∆SVib/NA - 12.365VhH

2 log L ) -2.455+ 0.0014Gp - 11.729FNSA(2) + 0.7780CIC + 6.023VM/VXYZ- 0.026SYZ

3 log L ) - 1.167+ 0.042R + 0.011∆Stot + 1.178Nocc.el.leV/NA

4 log L ) 0.768+ 1.1261ø + 0.084WNSA(3) - 3.301FPSA(2)

5 log L ) 3.988+ 0.8940øν + 5.375qA
min - 4.778FPSA(1) + 0.443HAHDCA(1) - 0.027PPSA(3)

6 log L ) - 0.976+ 1.0441ø + 0.054SZX + 0.369HDCPSA(2) - 0.0032DPSA(1)

7 log L ) - 0.700+ 0.0047Gb + 2.325VM/VXYZ+ 0.537Tb
E + 24.295FNSA(3) + 3.737FPSA(3)

8 log L ) 0.072+ 1.0831ø - 0.2612IC + 1.947SXY/RXY + 21.328FNSA(3) - 0.2981CIC + 0.352NHA

9 log L ) 3.651+ 0.6060ø - 0.577J + 0.592WNSA(3)

10 log L ) - 1.164+ 0.9290ø + 0.013PNSA(3) + 43.705FPSA(3) - 0.969FPSA(2) - 5.156qC
max

11 log L ) 3.257+ 0.6190ø + 0.577WNSA(3) - 0.482J
12 log L ) 6.759+ 0.031SM - 9.691VhH + 24.478HAFCPSA(2) + 0.083νTD

h

13 log L ) - 1.047+ 0.9881øV + 0.028WNSA(1) + 0.426Etot - 1.628SYZ/RYZ - 2.899qA
min

14 log L ) -3.003+ 0.0043Gb + 0.3972IC + 0.790(HA,HD)max/min+ 0.067∆Hf
0/NA + 5.688SXY/RXY

15 log L ) 18.174+ 0.049R - 1.252FNSA(2) - 18.996PH
min + 0.142PPSA(3)

16 log L ) 0.187+ 1.1271ø - 0.0061PPSA(2) - 122.762HDFCPSA(2) - 13.821FNSA(3) + 1.167(HA,HD)max/min

Hydrocarbons: Aromatic
17 log L ) -4.859+ 1.0731ø - 0.0742IC - 0.114Φ + 8.155SXY/RXY + 1.994HAFPSA(2) + 0.594(HA,HD)max/min

18 log L ) 0.489+ 1.0591ø + 0.3771IC + 0.063RPCS- 0.0032DPSA(1) + 13.739FNSA(3)

19 log L ) -0.850+ 1.4961ø + 1.7541BIC + 0.062PNSA(2)

20 log L ) - 1.234+ 1.5411ø + 0.057PNSA(2) + 0.404Φ
21 log L ) -1.293+ 0.5343ø + 0.039WNSA(1) + 2.000FPSA(2) + 1.7630IC + 28.440FNSA(3)

22 log L ) -1.329+ 0.053WNSA(1) + 0.2883ø + 0.684WPSA(3) + 0.3440CIC + 2.410SXY/RXY

23 log L ) - 1.357+ 0.027PNSA(1) + 3.235FPSA(2) - 3.735HDFPSA(2) + 87.785FPSA(3) + 0.0078∆Hf
o

24 log L ) 44.908+ 0.061R + 2.556Nocc.el.leV‚/NA - 7.314Eexc
min(H - C) - 1.154Estate

min (H)

Protic Solvents- Alcohols
25 log L ) - 5.093+ 1.639NHA - 8.861qA

min + 1.144µhyb + 0.959Etot + 0.011HAPSA(2)

26 log L ) 0.249+ 1.0741ø + 1.089(HA,HD)max/min+ 0.115HACA(1) + 12.568FPSA(3) - 0.0271CIC
27 log L ) -1.087+ 0.8951ø + 1.298(HA,HD)max/min+ 4.4381SIC
28 log L ) 0.081+ 1.2691ø + 1.574(HA,HD)max/min+ 0.088HDCA - 0.0180CIC
29 log L ) -0.946+ 1.1181ø - 0.165PPSA(3) + 2.165NHD + 4.1330SIC
30 log L ) 3.106+ 1.108(HA,HD)max/min+ 0.4470ø + 5.737HDFPSA(2)

31 log L ) 3.918+ 1.239(HA,HD)max/min+ 0.4340ø - 0.0033PPSA(1)

32 log L ) 2.276+ 1.316(HA,HD)max/min- 0.106Φ + 0.5380ø
33 log L ) 2.758+ 0.5330ø + 1.113(HA,HD)max/min- 0.005DPSA(2)

34 log L ) 2.274+ 2.396(HA,HD)min + 0.5200ø
35 log L ) 7.479+ 0.0065W + 1.475(HA,HD)max/min- 0.010WPSA(1) - 0.203PPSA(3)

36 log L ) 2.238+ 1.088(HA,HD)max/min+ 0.5220ø
37 log L ) 2.264+ 1.142(HA,HD)max/min+ 0.5410ø + 1.138HAHDCA(2)

38 log L ) 0.189+ 0.015SM - 13.201FNSA(2) + 0.030WPSA(1)

39 log L ) 1.450+ 1.808(HA,HD)min + 0.6680ø - 0.402FPSA(2)

40 log L ) -1.259+ 1.1451ø + 1.078(HA,HD)max/min+ 0.181HACA(1) - 11.146qA
max+ 3.8020SIC

41 log L ) -1.399+ 0.008Gb + 13.895P - 1.140TE

42 log L ) 9.204+ 2.924µhyb + 120.666RC
min

Polar Aprotic Solvents - Ethers
43 log L ) - 0.022+ 0.056R + 0.046WNSA(1) + 0.193HDCA
44 log L ) -1.012+ 0.9260ø - 1.031FPSA(2) + 0.5860IC + 0.185HAHDSA(2)

45 log L ) 0.066+ 1.0331ø + 1.8900BIC
46 log L ) -3.523+ 0.063R + 0.025HASA+ 0.8660IC + 0.0052∆Hf

0 + 2.169nA
max

47 log L ) -4.409+ 0.055R + 1.218(HA,HD)max/min- 20.036FNSA(3) + 3.002PhC + 0.967Nocc.el.leV‚/NA

Dipolar Aprotic Solvents
48 log L ) 1.497+ 1.1791ø + 33.285qC

max - 0.327PPSA(3) + 19.666FHACA
49 log L ) -0.912+ 1.1511ø + 1.4690IC + 0.772(HA,HD)max/min- 0.039SZX + 0.0043HAPSA(2)

50 log L ) 1.702+ 1.0751ø + 51.143qC
min + 1.266(HA,HD)max/min+ 0.9422SIC- 0.012PPSA(2)

51 log L ) -0.045+ 1.1421ø + 0.434µ - 0.0047DPSA(1) + 0.635HDCPSA(2)

52 log L ) 2.072+ 0.214Nocc.el.leV - 0.845J - 34.456FNSA(3) + 60.910qC
min

53 log L ) 9.483+ 0.0017Gp - 0.093PNSA(3) - 1.942VC
min - 0.391J + 0.667WPSA(3)

54 log L ) 2.358+ 0.8241ø + 0.031WNSA(1) - 1.245J
55 log L ) 6.627+ 0.0056Gb - 7.777VH

min + 16.637qC
max

56 log L ) -3.302-13.248qnet
min + 0.023PNSA(1) + 0.938WPSA(3) - 0.261HOMO - 0.759J

57 log L ) -3.543+ 0.0043Gb + 0.927Etot + 1.517µhyb + 5.241FHASA
58 log L ) -0.217+ 0.0027Gp - 27.326FNSA(3) + 1.506µhyb

59 log L ) 2.271+ 0.0045Gb + 1.7530IC + 0.272HOMO + 9.280FHASA- 13.558qA
max

60 log L ) -0.275+ 0.0056Gb + 0.924νTD
h + 0.175µ + 1.014HACA(2) + 1.014FNSA(1)

61 log L ) - 0.568-0.218WNSA(2) + 0.5751øν + 1.749νTD
h + 1.147FNSA(1)
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account for the effective mass distribution in a molecule,
providing a good measure of the dispersion forces in the
bulk solvent. The topological family of descriptors70 is
represented by the average information content of order 2
(2IC) and the complementary information content of orders
0 and 1 (0CIC and1CIC respectively). These descriptors, of
different orders, account for both the constitutional and
structural diversity of a molecule. The zeroth-order indices
code chemical diversity realized as the presence of atoms
of types other than C, H, and O. The information topological
indices of higher orders also account for the branching and
diversity of the molecular structure.

Inert Solvents (ii) - Aromatics and Chloroaromatics.
Benzene and alkyl- and halogeno-benzenes exhibit similar
solvent properties. The QSPR models for them presented in
Table 1 are of good statistical quality, withR2 ands2 ranging
from 0.926 and 0.52 for benzene to 0.974 and 0.37 for
m-xylene, respectively. The Randic indices of different
orders, or molecular polarizability in the case of bromoben-
zene, are frequently used molecular bulk descriptors. The
number of occupied electronic levels (Nocc.el.leV) is another
related descriptor because the higher the number of the
electronic shells, the more polarizable the molecule.

Electrostatic interactions are reflected by contributions
from the family of surface area descriptors such as the partial
negative surface area (PNSA), the partial positive surface
area (PPSA), or functions of them such as the fractional
PPSA (FPSA) and the difference between PPSA and PNSA
(DPSA). Five of the eight models include topological
descriptors such as the average information content (IC),
bond information content (BIC), and complementary infor-
mation content (CIC). The information content of different
types and different orders reflects the diversity of atomic
and structural constitution of organic molecules.

Two models (benzene andm-xylene) include the Kier-
Hall flexibility index (Φ), a topological index based on
structural properties which is considered as measuring the
constraints on a molecule attaining infinite flexibility (like
an endless chain of C sp3 atoms). The flexibility index
depends on (a) number of atoms, (b) the presence of rings,
(c) branching, and (d) the presence of atoms with covalent
radii smaller than those of C sp3.

Protic Solvents- Alcohols.Hydroxyl-containing solvents
are represented by water, 16 aliphatic alcohols, 1 aromatic
alcohol, and 1 diol (ethylene glycol). Solubilities in water
and 1-octanol have been measured for the largest numbers
of solutes: 177 and 173, respectively. Though only 14 data
points were available, the model for ethylene glycol includes
only two adjustable parameters. The models for these
solvents are characterized by good to excellent statistical
quality with R2 varying from 0.878 for 2-ethyl-1-hexanol to
0.982 for benzyl alcohol.

As expected, hydrogen bond descriptors are of major
importance in modeling the protic solvents. The HB descrip-
tors include simple integer examples such as the counts of
hydrogen acceptor or donor sites (NHA, NHD) together with
the ratio of the maximal number of hydrogen bond donor or
acceptor sites in a molecule to the corresponding minimal
value, (HA, HD)min/max, and advanced hydrogen bond de-
scriptors expressed in the form of partial surface area. The
latter include the hydrogen acceptor charged surface area
(HACA) and the hydrogen donor charged surface area
(HDCA).

Electrostatic interactions are also relevant to solvation in
protic solvents. The first two terms of the multipole expan-
sion1 serve as descriptors in the QSPR models for water,
1-octanol, and ethylene glycol: the minimum and maximum
atomic charge for all atom types (qA

min and qA
max) and the

hybridization component of the molecular dipole (µhyb). The
µhyb descriptor contributes positively to the solubility because
dipole-dipole interactions are strong in alcohol media. The
topographic electronic index,TE, a more complex function
of the atomic charges and molecular geometry, is calculated
as the sum of the charge differences over all molecular bonds.
Equation 41 for benzyl alcohol contains descriptorTE,
bearing the negative sign. This is possibly due to the fact
that large values ofTE are possessed not only by compact,
highly polar molecules but also by long-chain lower polarity
ones. The charge-weighted (FPSA and PNSA) and the total
molecular surface area weighted (WNSA) partial surface area
appear in 6 out of the 18 equations pointing to the high
importance of electrostatic interactions on solvating protic
species, which are of high polarity.

Table 2 (Continued)

eq QSPR model

Dipolar Aprotic Solvents
62 log L ) - 2.540+ 0.0061Gb - 6.797FPSA(3) + 60.391HAFCPSA(2) + 4.350SYZ/RYZ

63 log L ) 2.834- 0.113PNSA(3) + 0.0017Gp - 0.867J + 0.041HD PSA(2) - 0.0402SIC
65 log L ) -0.794+ 0.0027Gp + 1.5290IC - 1.159WNSA(3) - 1.015HAFPSA(2) - 0.206PPSA(3)

65 log L ) -2.258+ 1.7100IC + 0.9691ø + 1.622(HA,HD)max/min- 0.077∆Hf
0/NA + 0.0082PNSA(1)

66 log L ) 0.412+ 0.053WNSA(1) + 6.657Pf
2 + 0.049PPSA(3)

67 log L ) 23.173+ 2.113HOMO + 0.103PPSA(3)

68 log L ) 0.598+ 0.595µpch + 2.816FHBSA+ 0.7071ø - 0.0029DPSA(1)

69 log L ) 0.901+ 0.0092PNSA(1) + 0.0041Gb + 84.302HAFPSA(2) - 1.014cp
int/NA

Figure 2. Relative distribution of different types of descriptors
over all solvents.
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The cavity-forming features of the molecules are ad-
equately described by topological indices, of which the
Randic indices of zero- and first-orders occur in lines 26-
40 of Table 2 and various information topological indices
(IC, CIC, SIC) in lines 26-29 and 40. The coefficients of
eqs 25-42 suggest that the cavity formation term is of less
significance in describing solvating ability of protic solvents
than the contributions from the hydrogen bond descriptors,
such as (HA, HD)min, HACA, and HDCA. This observation
is in agreement with the Abraham approach.18

Polar Aprotic Solvents- Ethers. Three acyclic and two
cyclic ethers (THF and 1,4-dioxane) comprise the group of
five polar aprotic solvents, lines 43-47 of Tables 1 and 2.
The statistical quality of these QSPR models varies from
good for methyltert-butyl ether (R2 ) 0.944,s2 ) 0.342) to
excellent for dipropyl ether (R2 ) 0.998,s2 ) 0.016).

As solvents, ethers demonstrate good solvating properties
due to their high polarity and Lewis basicity. The Lewis
basicity is directly reflected by such descriptors as HASA
(the hydrogen bond acceptor surface area) and (HA, HD)max/min,
both of which bear the positive sign in eqs 46 and 47. For
hydrophilic solutes, a still more important parameter is their
HB donor ability, that is, the ability to interact with the lone
pairs of the ether oxygen. In the case of methyltert-butyl
ether, where the hydrogen bonding is sterically hindered, only
cavity-formation terms contribute significantly to the prop-
erty: eq 45 includes only two topological indices such as
the Randic first-order index (1ø) and the average bond
information content of zero-order (0BIC).

Other important cavity-formation descriptors in eqs 43-
47 are molecular polarizability,R, the information topological
indices, and the number of occupied electronic levels
(Nocc.el.leV). The electrostatic contribution to the solvation
processes in ethers is described by such polar surface areas
asWNSA(1), FPSA(2), andFNSA(3).

Dipolar Aprotic Solvents. The most comprehensive
solvent data set is that of the dipolar aprotic species, which
includes 22 diverse solvents. The best QSPR model is derived
for solubilities in adiponitrile (R2 ) 0.994,s2 ) 0.004), in
N-methyl-2-pyrrolidone (R2 ) 0.994,s2 ) 0.059), and in
N,N-dimethylformamide (R2 ) 0.990, s2 ) 0.065). The
correlation for 2-pyrrolidone is far poorer (R2 ) 0.837,s2 )
0.093) and could be explained by an insufficient ability of

the existing CODESSA PRO descriptors to treat interactions
with molecules as complex as 2-pyrrolidone: which is
simultaneously a free nitrogen base, a hydrogen bond donor,
and a dipolar aprotic species. The QSPR model is much
better for the corresponding methyl derivative,N-methyl-2-
pyrrolidone.

The dipolar aprotic nature of the species listed in Tables
1 and 2, lines 48-69, is reflected by the descriptors that
characterize the solutes under study. The dipole-dipole and
other electrostatic interactions seem to be the most significant
intermolecular interactions. That applies to most of the QSPR
models: atomic charges, dipole moments, and various
charged surface area descriptors are those most frequently
used in models 48-69. The molecular dipole moment or its
components occur explicitly in five models, eqs 51, 57, 58,
60, and 68. The contribution of the monopole moment is
reflected by different atomic charges, as reflected in six
equations (48, 50, 52, 55, 56, and 59).

However, the cavity-formation contribution also turns out
to be significant in the modeling of the solvating ability of
dipolar aprotic solvents. The first-order Randic index, the
Kier-Hall valence connectivity index, the Balaban index,
and different information topological indices participate in
13 out of 22 models. The Balaban index, bearing the negative
sign in eqs 52-54, 56, and 63, describes the negative effect
of molecular “centricity” on solubility in dipolar aprotic
solvents. The Balaban index takes its largest values in highly
branched hydrocarbons, which are poorly soluble in the
dipolar aprotic solvents studied.

The gravitational indices19 Gb andGp (calculated over all
bonds or all atom pairs) are further measures of molecular
bulk properties or the ability to display dispersion interac-
tions. Eight QSPR models (eqs 53, 55, 57-60, 62-64, and
69) containGb and Gp bearing a positive sign. Another
measure of dispersion interactions is the energy of the highest
occupied molecular orbital (HOMO). The hydrogen bonding
term is also important: (HA, HD)max/min, HACA, HASA, and
FHBSA (the fractional hydrogen bond surface area) con-
tribute to 8 out of the 22 models.

CONCLUSIONS

The QSPR solvation models, based on the CODESSA
PRO theoretical descriptors, are fast and have reasonable

Figure 3. Relative distribution of different types of descriptors over particular solvent groups.
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predictive power. The squared standard deviations or vari-
ances of the predictive models range from 0.004 for
adiponitrile to 0.608 for ethanol, measured in logarithmic
units of the Ostwald solubility coefficients. About 500
organic solutes were studied over the 69 solvents from 14
solutes for ethylene glycol to 226 for hexadecane. All the
QSPR models are built on the assumption of the strong
nonorthogonality of the underlying descriptors: the default
cutoff for descriptor one-to-all-others intercorrelation is fixed
as 0.5. The methodology developed is potentially useful for
the study of a range of diverse phenomena, including fluid-
phase equilibria and ADME evaluations.

EXPERIMENTAL SECTION

The two- and three-dimensional molecular structures of
solutes were stored with their properties in an ISIS/Base
database.71 2D to 3D conversions and preoptimization were
performed using Hyperchem 5.1.72 Final optimizations were
performed using the AM1 parametrization73 within the
semiempirical quantum-chemical program CMOPAC (imple-
mented in CODESSA PRO60), which is based on MOPAC
version 7.61 A gradient norm 0.01 kcal/Å was forced to
calculate electronic, geometric, and energetic parameters for
the isolated molecules. FORCE calculations were used to
produce thermodynamic parameters. The structures were used
in the CODESSA PRO program to calculate constitutional,
topological, geometrical, thermodynamic, quantum chemical,
and electrostatic descriptors.45,74

The total number of CODESSA PRO descriptors com-
puted for the given data set is 834. Some descriptors, which
are clearly irrelevant to solubility, were deliberately excluded
from the descriptor pool. To include the most appropriate
ones, we formed special descriptor sublists, discarding such
low-informative or inappropriate variables as constitutional
descriptors and quantum chemical reactivity indices. The
number of descriptors for a particular structure is dependent
on the number of possible results for the invariant operators
over the atomic and bond constituents. Correlations were
produced with HM PRO (the Heuristic method for CODES-
SA PRO), which has an algorithm consisting of four major
parts:

(1) The one-parameter descriptors selection. The selection
is based on squared correlation coefficient, FisherF-criteria,
and Studentt-criteria. Eliminating of the highly intercorre-
lated descriptors and descriptors with insignificant variance
is realized.

(2) Pairwise selection. This selection is made on the basis
of the squared correlation coefficient and FisherF-criteria.

(3) Expanding/contracting stage. The unexpanded correla-
tions in the correlation set are expanded by adding a
previously unselected descriptor. The number of correlations
added in such a manner can be limited by values of the
squared intercorrelation coefficient,F-criteria (normalized
or not), and standard error. The correlations with the
maximum allowed number of descriptors (given parameter)
are not expandable. The correlations with a minimum number
of descriptors (i.e. two descriptors, because all one-parameter
correlations are in the in-memory correlation set) are not
contractible. The process begins from the correlations with
largest values of the fitness function. The identical correla-
tions are not put into in-memory correlation set (uniqueness

is constrained). This stage will be repeated until a stop event
appears, which can be any/all of following:

The in-memory correlation set is overfilled (It can be
conditionally unlimited when the correlation value of fitness
function is less than minimal in the set, and it is not stored
at all after overfilling. In this case, if correlation is inserted
into the set, the correlation with the worst value of the fitness
function is eliminated).

Maximum number of iterations achieved.
Time limit is reached.
The correlation set does not have any correlation to

expand/contract (full search is finished).
(4) The output stage. The given number of the “best”

correlations is printed out. The iterations for selecting for
the printed correlations begin from the “best” correlations.
For all correlations in a cycle, the full set of statistical
parameters is calculated including intercorrelation of the
descriptors (one to all others), cross-validated squared
correlation coefficient, etc. The parameters of the method
are defined by the set of the selection criteria. For any
correlation, a full list of the predecessors in order of
calculation can be printed and on the basis of best correlations
with subsets of the descriptors until a one-parameter cor-
relation will be printed.

The fitness function above is defined as follows

wherer2 is the squared correlation coefficient,F is the Fisher
criteria,n is the number of the data points,s2 is the standard
error (nonnormalized), andN is the number of the descriptors
in the correlation. Thexi is weight of the factors and is
selected as{1, 1, 1,-1, -1}.
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