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As part of our general QSPR treatment of solubility (started in the preceding paper), we now present
quantitative relationships between solvent structures and the solvation free energies of individual solutes.
Solvation free energies of 80 diverse organic solutes are each modeled in a range from 15 to 82 solvents
using our CODESSA PRO software. Significant correlations (in terms of squared correlation coefficient)
are found for all the 80 solutes: the best fit is obtained forn-propylamine (R2 ) 0.996); the lowestR2

corresponds to toluene (0.604).

INTRODUCTION

The structures of both solute and solvent determine the
interactions relevant to the solubility process. Consequently,
a quantitative treatment of solute-solvent interactions may
be expressed through a general formula as follows

where (i)C0, Cel, Cdisp, CcaV, andCHB are the intercept and
the general coefficients for the electrostatic interaction,
dispersion interaction, cavity formation, and solute-solvent
hydrogen bonding terms, respectively; (ii)Del/disp/caV/HB-solVent

are appropriate descriptors describing the properties of
solvents; and (iii)Del/disp/caV/HB-soluteare descriptors reflecting
the properties of solutes. The summations indicate that each
term can include more than one descriptor accounting for
the same type of interaction. In a series for which the solute
is constant, the solute descriptors can be combined into the
corresponding coefficients, thus the solubility relationship
depends solely on the structural features of the solvent.
Conversely, when dealing with the solubility of different
solutes in a single solvent, the solvent descriptors can be
combined into the corresponding coefficients, and solubility

is then determined only by the structural characteristics of
the solutes.

Most quantitative treatments of solubility have expressed
the structural properties of solutes in a series for a single
solvent.1,2 Our earlier work on gas solubilities in water,3 in
methanol, and in ethanol,4 and the previous paper in the
present series,5 all describe studies in this direction. Quantita-
tive treatment of solubility addressed by varying the structure
of the solvent is less common. We now overview available
publications for series of solubilities in which the solute is
kept constant.

For these series, two experimentally based methods have
been used to correlate and predict solubilities:linear
solVation energy relationships(LSER) andmobile order
theory (MOT). The LSER method is based on multilinear
regression (MLR) analysis of the solubilities of solutes in
different solvents and has gained increasing attention during
the past decades. The method was originally developed by
Kamlet and Taft6,7 and further refined and applied by
Abraham and co-workers8 who have applied it to numerous
solutes. These studies include the solubilities of anthracene,9

phenanthrene,9 trans-stilbene,10 hexachlorobenzene,9 fer-
rocene,11 fullerene C60,12 diuron,13 and monuron.13 The LSER
MLR model utilizes several characteristics that account for
the solvent/solute polarizability, dipolarity, volume, hydrogen
bond acidity, and hydrogen bond basicity. The strength of
the approach relies on combining all these characteristics
into a single model, thus providing a solid basis to discuss
the solute-solvent interactions and also the ability to rank
each type of interaction for each solute-solvent pair. A
limitation is that the characteristics (descriptors) used in the
LSER model originate from experimental measurements;
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these are often unavailable or incomplete when working with
diverse compounds within large databases.

The MOT approach14 has been used extensively by Acree
and co-workers to predict mole fraction solubilities of various
solutes in nonelectrolyte solvents. The solutes studied include
anthracene,15 phenanthrene,9 pyrene,16 acenaphthene,17 fluo-
ranthene,18 trans-stilbene,19,20 benzil,21 thianthrene,22 thiox-
anthen-9-one,23 diphenyl sulfone,24 hexachlorobenzene,9 fer-
rocene,25 4-nitroaniline and 4-nitro-N,N-dimethylaniline,26

and diuron27 and monuron.28 The MOT is based on a
thermodynamic treatment of the liquid state that includes
terms for describing the effects that solute-solvent, solvent-
solvent, and solute-solute interactions have on the chemical
potential of the dissolved solute. MOT assumes that hydrogen-
bonded aggregates are formed temporarily without a distin-
guishable thermodynamic identity. Partners of hydrogen
bonds are not preserved with time but rather change
continuously. Such treatment leads to an equilibrium con-
sideration involving the fractions of time during which an
amphiphilic proton belongs respectively to a bonded and
nonbonded state. This differs from the more conventional
thermodynamic approaches that treat equilibrium in terms
of discrete chemical species. Depending upon the functional
groups present on the solute and solvent molecules, the MOT
predictive expression may contain up to six terms and require
a priori knowledge of several input stability constants before
a prediction can be made.

The solubility of anthracene and other polyacenes in
different solvents was the subject of several studies9,15

including extensive experimental and theoretical work by
Acree and co-workers (see ref 14 and references herein).
Recently, Acree and Abraham9 reported a theoretical study
on the solubility of anthracene, phenathrene, and hexachlo-
robenzene using LSER, MOT, and the UNIFAC group
contribution approach. LSER five-parameter general solubil-
ity equations for the solubility of anthracene (in terms of
Ostwald solubility coefficients in logarithmic units) in 29
solvents gave average absolute deviations of 1.7% for the
equation relating partition coefficients between water and
organic solvent (logP) and 1.07% for partition coefficients
between the gas phase and a given solvent (logL). When
the MOT equations were applied, the prediction results had
an average percentage error of 3.2%. Two versions of the
UNIFAC model resulted in predictions with 2.4 and 1.8%
errors. The solubility of phenathrene was predicted with
accuracy similar to that for anthracene9 by applying LSER
equations to derive two correlations for its solubility in 23
solvents with average absolute deviations of 1.2% and 2.0%
for logP and logL, respectively. The respective MOT
application to phenathrene results in a 2.04% prediction error.
The solubility of hexachlorobenzene was studied in a range
of 20 different solvents applying both a LSER equation and
MOT.9 The former method provided the better results, with
the average absolute deviation of 1.9% of the Ostwald
solubility coefficient logarithmic scale.

Extended studies oftrans-stilbene solubilities in a range
of organic solvents conducted by Abraham, Acree, and co-
workers10,19,20resulted in good predictions in 17 nonaqueous
solvents with the average absolute deviation of 1.2%.10 More
recently, Acree et al.20 applied the MOT and reported a small
average percentage error (0.9%) fortrans-stilbene solubilities
in 34 organic solvents.

Studies of the solubility of ferrocene (based on LSER
methodology) resulted in a 1.6% average error for logarith-
mic Ostwald solubility coefficients for 19 solvents.11 A
comprehensive experimental study of ferrocene solubilities
performed by Acree and co-workers25 correlated ferrocene
solubilities in 42 organic solvents using MOT with an
average absolute deviation of 3.7%.

Solubilities of the pesticidesN′N′-dimethyl-N-(3,4-di-
chlorophenyl)urea (diuron) andN′N′-dimethyl-N-(4-chloro-
phenyl)urea (monuron) were also investigated by Abraham,
Acree, and co-workers.13,27,28A prediction based upon MOT
for the solubility of diuron in 28 nonalcoholic solvents
provided reasonable estimates with an average absolute
deviation of 2.3%. The same authors,13 using the LSER
solvation equation, correlated the solubilities of diuron in
22 solvents with an average percentage error of 1.1%. For
monuron solubilities in 25 solvents, the error was 1.1%; the
corresponding result using MOT for 21 solvents was
2.4%.28

As already mentioned, MOT methodology has been used
extensively in the prediction of solubility. The solubility of
pyrene was predicted with a 2.4% average absolute deviation
for a set of 30 organic solvents.16,18 For acenaphthene in 29
solvents, the average absolute deviation between the pre-
dicted and observed values of the logarithmic Ostwald
coefficients17 was 1.8%. An average error of 2.2% was found
for fluoranthene solubilities in 42 organic solvents, providing
acetonitrile (a strong outlier) was omitted.18 For 1,2-
diphenylethane-1,2-dione (benzil), the discrepancy between
experimental and MOT predicted solubility values for 30
solvents is 1.8% of the average absolute deviation.21 The
solubility of thianthrene was correlated in 20 organic solvents
with an average absolute deviation of 2.5%.22 The situation
with thioxanthen-9-one is akin to that of the case of
thianthrene discussed above. Acree et al.23 determined
experimental solubilities of thioxanthen-9-one in 35 different
organic solvents and correlated 26 of them by MOT with an
error of 4.3%.

Abraham et al. analyzed the solubility of fullerene in 20
solvents and applied an LSER equation8 with an average
absolute deviation of 1.4%.12

The application of purely theoretical molecular descriptors
has seldom been used in studies of solubility series with the
solute constant but has found application in a study of the
solubility of fullerenes. Sivaraman et al.29 used only topo-
logical and constitutional descriptors in modeling the solubil-
ity of fullerene. Although the predictions for the relatively
small subsets are good, their treatment utilizes (i) valence
connectivity indices of different orders which are highly
intercorrelated and (ii) an indicator variable containing
several hidden parameters. Jurs and co-workers30 have also
predicted fullerene solubility using MLR and feed-forward
computational neural networks (CNN). Their final CNN
architecture 9-3-1 resulted in a model that consisted of
topological, geometric, and electronic descriptors, which
tends to agree with basic solvation principles. Their model
has root-mean-square errors of 0.255, 0.253, and 0.346 log
solubility units for the training, cross-validation, and external
prediction set, respectively.

In a very recent publication, Shang et al.31 used ab initio
quantum chemical calculations to collect a set of theoretical
descriptors for 78 pure solvents. Following this, correlations
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were established for the solubilities of naphthalene, phenan-
threne, anthracene, biphenyl, acenaphthene, hexachloroben-
zene, benzyl, thioxanthene-9-one, diphenyl sulfone, and
diuron. The quality of models varies from 0.861 to 0.931 of
R2 value.

In the present paper, we use the same database as in our
preceding paper,5 but now consider series in which the solute
is constant, and thus the solubility variations are determined
by the solvent structure. We apply the method of forward
selection of descriptor scales to form QSPR models and
analyze the descriptor content of the models from the point
of view of solubility and solute-solvent interactions.

DATA AND METHODOLOGY

The general arrangement of the solubility data has already
been described in detail in our preceding article.5 For the
current study, we selected 80 solutes, choosing only those
that have reliable solubility data for at least 15 solvents. The
solutes selected are listed in Table 1 along with the statistical
parameters of the corresponding QSPR models.

The computational methodology applied to the current
study coincides in general with that used in the preceding
article.5 Molecular structures of the solvents were drawn and
optimized in the same fashion, and a total of 890 theoretical
descriptors were calculated using CODESSA PRO software.

Table 1. Solutes and Corresponding Statistics for QSPR Models in a Series of Solventsa

no. name of the solute R2 R2
cv s2 F n ND no. name of the solute R2 R2

cv s2 F n ND

Hydrocarbons: Aliphatic
1 n-pentane 0.881 0.839 0.019 37 31 5 10 2,5-dimethylhexane 0.923 0.858 0.020 55 29 5
2 n-hexane 0.870 0.806 0.031 36 33 5 11 ethylcyclohexane 0.946 0.921 0.015 85 30 5
3 cyclohexane 0.912 0.867 0.018 58 34 5 12 n-nonane 0.881 0.804 0.042 34 29 5
4 2-methylpentane 0.912 0.855 0.014 50 30 5 13 1-hexene 0.864 0.760 0.026 23 15 3
5 n-heptane 0.883 0.826 0.034 42 34 5 14 isoprene 0.928 0.864 0.005 47 15 3
6 2,4-dimethylpentane 0.909 0.839 0.018 46 29 5 15 dichloromethane 0.826 0.680 0.021 22 29 5
7 methylcyclohexane 0.925 0.889 0.016 52 22 4 16 chloroform 0.777 0.549 0.047 17 30 5
8 n-octane 0.884 0.841 0.037 41 33 5 17 carbon tetrachloride 0.855 0.784 0.010 28 24 4
9 2,3,4-trimethylpentane 0.942 0.905 0.014 75 29 5 18 1,2-dichloroethane 0.820 0.656 0.026 25 14 2

Hydrocarbons: Aromatic
19 benzene 0.773 0.677 0.011 17 31 5 30 trans-stilbene 0.936 0.909 0.018 134 52 5
20 toluene 0.604 0.355 0.025 9 43 6 31 benzilb 0.911 0.857 0.030 63 37 5
21 ethylbenzene 0.876 0.818 0.014 28 16 3 32 thianthrene 0.926 0.849 0.004 72 28 4
22 o-cresol 0.956 0.905 0.017 94 17 3 33 thioxanthen-9-one 0.943 0.920 0.010 123 35 4
23 p-cresol 0.955 0.906 0.021 85 16 3 34 diphenyl sulfone 0.977 0.966 0.014 294 40 5
24 naphthalene 0.901 0.838 0.008 37 16 3 35 chlorobenzene 0.734 0.533 0.015 10 20 4
25 anthracene 0.823 0.782 0.045 70 82 5 36 hexachlorobenzene 0.898 0.866 0.014 67 44 5
26 phenanthrene 0.916 0.868 0.026 96 50 5 37 4-nitropyridineN-oxide 0.960 0.863 0.047 190 37 4
27 pyrene 0.852 0.808 0.042 77 73 5 38 methyl 4-hydroxybenzoate 0.923 0.863 0.022 44 15 3
28 acenaphthene 0.913 0.869 0.009 80 44 5 39 ferrocene 0.941 0.917 0.006 160 45 4
29 fluoranthene 0.908 0.849 0.031 83 48 5 40 fullerene 0.929 0.911 0.112 136 58 5

Alcohols
41 methanol 0.917 0.881 0.076 72 41 5 47 1-hexanol 0.906 0.862 0.033 39 26 5
42 ethanol 0.926 0.910 0.044 96 45 5 48 1-heptanol 0.976 0.958 0.007 200 19 3
43 1-propanol 0.927 0.891 0.038 79 37 5 49 2-methyl-1-propanol 0.976 0.961 0.014 152 15 3
44 2-propanol 0.894 0.816 0.061 34 21 4 50 2-methyl-2-propanol 0.960 0.930 0.026 95 16 3
45 1-butanol 0.925 0.881 0.036 69 34 5 51 phenol 0.972 0.946 0.012 161 18 3
46 1-pentanol 0.954 0.921 0.017 97 18 3

Organic Bases
52 ethylamine 0.974 0.912 0.005 152 16 3 57 4-nitro-N,N-dimethylaniline 0.953 0.937 0.016 166 38 4
53 n-propylamine 0.996 0.993 0.0006 1013 15 3 58 monuronb 0.973 0.963 0.034 259 42 5
54 n-butylamine 0.978 0.970 0.004 191 17 3 59 diuronb 0.951 0.933 0.065 167 49 5
55 aniline 0.956 0.927 0.032 81 20 4 60 piroxicamb 0.749 0.567 0.368 13 22 4
56 4-nitroaniline 0.806 0.726 0.080 32 45 5

Organic Acids
61 benzoic acid 0.889 0.831 0.042 56 41 5 65 ibuprofenb 0.735 0.549 0.343 13 24 4
62 2-hydroxybenzoic acid 0.892 0.839 0.087 54 31 4 66 diclofenacb 0.765 0.579 0.264 15 23 4
63 4-hydroxybenzoic acid 0.936 0.862 0.094 77 32 5 67 haloperidolb 0.934 0.815 0.078 61 17 3
64 4-aminobenzoic acid 0.921 0.864 0.190 55 24 4 68 paracetamolb 0.901 0.828 0.163 55 29 4

Dipolar Aprotic Species
69 methyl acetate 0.979 0.967 0.005 238 19 3 75 acetonitrile 0.935 0.870 0.047 48 22 5
70 ethyl acetate 0.947 0.924 0.010 103 35 5 76 acetone 0.951 0.926 0.012 117 36 5
71 propyl acetate 0.987 0.971 0.004 388 19 3 77 1,4-dioxane 0.946 0.909 0.010 95 33 5
72 butyl acetate 0.982 0.966 0.004 227 22 4 78 2-butanone 0.913 0.871 0.017 65 37 5
73 pentyl acetate 0.986 0.973 0.003 356 19 3 79 2-hexanone 0.993 0.990 0.001 515 15 3
74 methyl pentanoate 0.992 0.989 0.002 565 17 3 80 nitromethane 0.931 0.871 0.034 60 23 4

a R2 - squared correlation coefficient,R2
cv - cross-validated squared correlation coefficient,s2 - squared standard deviation,F - Fisher criterion,

n - number of points in data set,ND - number of descriptors in QSPR model.b IUPAC nomenclature: benzil- 1,2-diphenyl-ethane-1,2-dione;
monuron- N′N′-dimethyl-N-(4-chlorophenyl)urea; diuron- N′N′-dimethyl-N-(3,4-dichlorophenyl) urea; piroxicam- 4-hydroxy-2-methyl-N-(2-
pyridyl)-2H-1,2-benzothiazine-3-carboxamide 1,1-dioxide; ibuprofen- R-methyl-4-(2-methylpropyl)- benzeneacetic acid; diclofenac- 2-(2,6-
dichloroanilino)phenylacetic acid; haloperidol- 4-(4-hydroxy-4′-chloro-4-phenylpiperidino)-4′-fluorobutyrophenone; paracetamol- 4-hydroxy-
acetanilide,N-(4-hydroxyphenyl)-acetamide.
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The theoretical considerations of the interplay between
CODESSA descriptors and different components of solvation
free energy discussed in our preceding article are of
significant relevance to the current study.

RESULTS

The correlation results for all of the 80 solutes are listed
in Tables 1 and 2. Each entry of Table 1 provides the
statistical characteristics of a QSPR model including the
chemical name of the solute the squared correlation coef-
ficient (R2), the cross-validated squared correlation coefficient
(R2

cv), the variance or squared standard deviation, (s2), Fisher
criterion value (F), the number of experimental points in data
set (n), and the number of descriptors in QSPR model (ND).
All the solutes are tentatively partitioned into six main
classes: (i) “aliphatic hydrocarbons” comprising 12 alkanes,
2 alkenes, and 4 chloroalkanes; (ii) “aromatic hydrocarbons”,
22, including one chlorocompound; (iii) “saturated alcohols”,
11, including phenol; (iv) “organic bases”, 9; (v) “organic
acids”, 8; (vi) “dipolar aprotic species”, 12, including 6 esters,
3 ketones, 1 nitrile, 1 nitro compound, and dioxane.

Table 2 displays the quantitative-structure activity rela-
tionship equations deduced for all the 80 solutes. The
equations are written in a linear notation; the key to the

independent variables (descriptors) is given in the Discussion
section. The number of descriptors involved in each multi-
linear regression analysis is rather small, varying from 6 for
toluene to 2 for 1,2-dichloroethane. Analysis of the overall
frequency of the descriptors, with respect to all solutes, is
displayed in Figure 1 and with respect to particular solvent
groups in Figure 2.

Tables 3-1-3-80 of the Supporting Information is a
collection of all the numerical data for the experimental and
predicted solubilities of each of 80 solutes. Each of these
tables contains a unique in-house ID for each solvent, its
chemical name, experimental solubilities of the solute, and
predicted solubilities of this solute as well as original
literature references to each solubility value.

DISCUSSION

To compare our current results with those discussed in
our preceding paper devoted to the treatment of solvents,5 it
is appropriate to preface this discussion with a general view
of the descriptors that occurred in the QSPR equations for
solutes. Again, as in the case of solvents (part 1 of this series),
electrostatic descriptors contribute significantly to the QSPR
equations for solutes, Figure 1, but, in contrast to part 1, the
histogram also demonstrates a high rating of quantum
chemical descriptors and a relatively small contribution from
topological indices and hydrogen bond descriptors. Within
the current study, we relate the molecular structure of
solvents to the partition characteristics of solutes, and thus
the solvents molecular features are of great importance. As
the solvent is to be considered as the bulk medium, the shape
and volume characteristics of individual molecules are less
important. In the case of the solute molecular structures
studied in part 1 of the present series of papers, the
contribution of topological and geometrical descriptors is
higher because the solutes 3D characteristics are crucial to
the formation of cavities in the bulk solvent. For the solvents
studied in the present paper, the most important contributions
come from the electrostatic and dispersion forces, which are
adequately reflected by various quantum chemical descrip-
tors.

In general, the statistical quality of the QSPR models for
the solutes appear to be slightly inferior to those for the

Figure 1. Relative distribution of different types of descriptors
over all solutes.

Figure 2. Relative distribution of different types of descriptors over particular solute groups.
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Table 2. QSPR Models for Solubility of 80 Solutes in a Series of Solvents

no. QSPR model

Hydrocarbons: Aliphatic
1 log L ) - 10.531-1.975HAFPSA(2) - 17.110Pσ-π

max + 2.491∆Eexc
max(H - C) - 0.068HDCA + 0.0035PNSA(2)

2 log L ) - 18.777-2.195HAFPSA(2) - 0.836qnet
max + 8.140PH

min + 0.0029PNSA(2)

3 log L ) - 5.498-1.578HAFPSA(2) + 1.187FNSA(2) - 0.487qnet
max - 4.950FHBCA+ 1.673∆Eexc

min(H - C)
4 log L ) - 21.632-2.977µ2/MW - 0.550qnet

max + 2.280VH
min + 4.238∆Eexc

max(H - C) - 0.0162SIC
5 log L ) - 2.748-0.0068HAPSA(2) - 0.070RPCS+ 6.913PH

min - 2.352HDFPSA(2) + 0.023PNSA(2)

6 log L ) 0.971-3.283µ2/MW - 16.504Pσ-π
max - 6.650qC

min + 2.876VH
min - 0.0541ø

7 log L ) 5.986-1.878Nocc.el.leV/NA - 0.045RNCS- 0.010DPSA(3) - 7.932FHDCA
8 log L ) 1.360-0.982qnet

max + 2.736FPSA(1) + 0.166WNSA(3) - 19.700FHDCA + 26.322NC
max

9 log L ) - 3.533-3.823µ2/MW - 18.376Pσ-π
max - 7.023qC

min + 0.951TH
min - 0.0963øν

10 log L ) 1.185-3.962µ2/MW - 18.252Pσ-π
max - 7.581qC

min + 3.107VH
min - 0.0993ø

11 log L ) 0.814-4.088µ2/MW - 15.794Pσ-π
max - 0.032HBCA+ 4.183VhH - 0.806FPSA(2)

12 log L ) 4.447-0.050RPCS- 0.069RNCS+ 13.962FNSA(2) + 1.503RPCG+ 20.263NC
max

13 log L ) - 33.715-2.449HAFPSA(2) + 37.940Pσ-σ
max + 0.097WNSA(3)

14 log L ) - 5.452-2.125µ2/MW + 0.920TH
min + 1.424SZX

ZX

15 log L ) 3.032-0.0562κ + 0.266Pπ-π
max - 1.525qA

min - 0.0062WNSA(1) - 1.792RPCG
16 log L ) 3.086-1.078RNCG- 0.655FNSA(1) - 0.470∆Cp

Vib/NA + 0.701qCnet
max + 0.552qnet

max

17 log L ) 4.584-0.736∆Cp
tot/NA - 0.043RPCS- 0.206νTD

h + 0.0029WNSA(2)

18 log L ) 3.216-1.944RNCG- 0.014SYZ

Hydrocarbons: Aromatic
19 log L ) -1.242- 11.658HAHDCAxTMSA

2 - 5.030*10-5*1/6γ + 0.954∆Eexc
min (H - C) - 0.0019∆Sint/NA + 0.472FNSA(2)

20 log L ) 11.330-0.0032PPSA(3) - 51.783HAHDCATMSA
(1) - 0.365qnet

min - 8.064Pσ
max

-σ + 12.972NC
max + 0.0016PNSA(2)

21 log L ) -3.443+ 0.0041PNSA(2) - 0.245HDCPSA(2) + 3.778æbond
max

22 log L ) 5.274-15.713FNSA(3) - 0.355J + 14.867EhC

23 log L ) 3.046-23.940FNSA(3) + 0.647RPCG+ 1.362SYZ/RYZ

24 log L ) 5.608+ 9.012qC
max + 4.009qA

min - 1.208FNSA(2)

25 log L ) 11.624- 1.939HAHDSAxTMSA
2 + 0.035∆Hf

0/NA + 0.370EHOMO - 2.294qA
min + 0.0068HAPSA(2)

26 log L ) 10.521-83.121HAHDCATMSA
1 - 0.147∆EHOMO

LUMO + 1.163µ2/MW - 0.364J - 2.670qA
min

27 log L ) -3.535-0.424ELUMO - 9.036HASATMSA
2 + 3.250æbond

max - 40.327NC
max - 0.959RNCG

28 log L ) 9.303-2.121FHBSA+ 0.079kA
max - 0.222J + 0.255EHOMO - 0.038∆Hf

0/NA

29 log L ) 15.060- 0.362ELUMO - 0.876HASAxTMSA
2 + 0.033∆Hf

0/NA + 0.460EHOMO - 37.757RC
max

30 log L ) 9.968-36.362FHDCA - 0.183ELUMO - 0.448J - 3.274qA
min + 0.056EHOMO

31 log L ) 11.178- 0.259∆EHOMO
LUMO + 0.9620IC + 7.583qC

min - 0.011SXY - 0.302HAHDCA(2)

32 log L ) 4.902-1.563∆CP
tot/NA - 0.470∆EHOMO

LUMO + 5.559FPSA(3) + 2.176∆Eexc
min(H - C)

33 log L ) - 4.937-0.417ER
tot + 0.102Ee-n

min(H - C) + 0.0111SIC+ 0.378µ
34 log L ) 16.224+ 0.0481-centerEe-e

tot + 0.509µpch
tot + 0.866Etot - 2.670HDFPSA(2) - 14.613PhC

35 log L ) 15.894-5.789HDFPSA(2) - 0.413Ee-e
max(H - C) + 0.102µ + 1.037∆Eexc

min(H - C) + 0.0332SIC
36 log L ) 4.452- 6.311FNSA(2) + 5.800P + 22.283qC

min + 33.704EhC

37 log L ) 12.289- 0.0029DPSA(1) - 0.108PNSA(3) + 0.331EHOMO

38 log L ) 3.120- 0.0403øν + 0.3281IC + 10.915EhC + 0.0043SYZ

39 log L ) 15.126- 0.141ELUMO - 30.959HDFCPSA(2) - 0.123Ee-n
max(H - C) - 0.093J

40 log L ) 17.434+ 0.221∆Hf
0/NA + 0.5233ø - 6.517µ2/MW + 1.304Nocc.el.leV/NA + 0.9230IC

Alcohols
41 log L ) 2.017+ 1.262µhyb

tot + 1.705IB + 1.970Pf
2 + 20.610qC

min + 1.888qCnet
max

42 log L ) 3.146+ 1.096µhyb
tot + 1.756Pf

2 + 19.081qC
min + 1.494qCnet

max - 0.0029∆Hf
Vib/NA

43 log L ) 1.326+ 4.172Pf + 0.432µhyb
tot + 2.350IB + 1.226FNSA(1) + 0.2462IC

44 log L ) 2.931- 0.148PNSA(3) - 0.3132CIC + 1.185µ2/MW - 0.022*1/2â
45 log L ) 8.145+ 0.963µhyb

tot + 6.740qnet
max - 0.125∆Strans + 21.103qC

min - 36.359Nh C

46 log L ) 2.379-118.172FNSA(3) + 28.234EhC + 0.0073∆Cp
int

47 log L ) 7.707+ 4.786qnet
max + 0.841µhyb

tot + 48.146IB/NA + 2.132æantibond
max + 0.301νTD

h

48 log L ) 15.196- 11.901nA
min + 40.323IC/NA - 7.265× 10-4∆HVib/NA

49 log L ) 9.146+ 1.129µhyb
tot - 0.161∆Stransl + 3.156qnet

max

50 log L ) 3.559+ 15.153qA
max- 0.4242CIC - 0.0012∆Hf

Vib/NA

51 log L ) 4.324-0.078PNSA(3) + 20.362EhC - 0.232J

Organic Bases
52 log L ) 1.826+ 0.045RPCS- 0.107ELUMO + 2.561IA/NA

53 log L ) 1.894+ 0.037RPCS+ 28.428IC/NA + 1.3500CIC
54 log L ) 2.395+ 81.001Pσ-π

max + 0.189µ + 62.384IC/NA

55 log L ) 21.751-22.136FNSA(3) + 25.473EhC + 0.1063ø - 0.178TC
min

56 log L ) 9.420-0.21∆EHOMO
LUMO - 0.607∆Eexc

tot + 20.037Pσ-π
max - 0.178Φ - 2.177µ2/MW

57 log L ) 8.722-35.133HAHDCAxTMSA
2 - 0.377TE

pairs + 0.041HACPSA(2) + 10.620EC
min

58 log L ) 13.166+ 9.436P - 0.1382ø + 0.244EHOMO-1 - 3.295FPSA(1) + 3.223qC
min

59 log L ) 2.326+ 10.082P + 0.066Ee-e
min(C) - 5.265FNSA(2) - 0.040Φ + 2.109HAFPSA(2)

60 log L ) 12.009+ 1.533nA
max - 0.622ELUMO + 4.548VhH - 84.108NC

max
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solvents. This can be explained by the smaller quantity of
uniform experimental data available for constant solute series
and, as a consequence, the highly variable origin of the data
generated. For instance, solubility data provided by water-
solvent partition measurements as logarithms of the Ostwald
solubility, by liquid-liquid chromatography in the form of
infinite dilution activity coefficients, and by analytical
chemistry methods in the form of molarities differ signifi-
cantly and are not completely comparable. In the case of
solvents, the situation is more favorable because the scattered
pattern that results from nonuniform data is often compen-
sated by extensively measured values.

For the QSPR models derived,R2 varies from 0.604 for
toluene to 0.996 forn-propylamine. Twenty-one solutes (25%
overall) have QSPR models withR2 less than 0.9. However,
variances or squared standard deviations vary in a more
narrow range. Analysis of variances,s2, shows that the
predictive ability of the models changes from excellent
(0.0006) inn-propylamine to admissible (0.368) in piroxicam.
Only 4 of 80 models have variances exceeding 0.4 kcal/
mol, the generally accepted value of experimental uncer-
tainty.32

Only 15 of the 80 solutes treated were previously studied
theoretically by other authors: anthracene, phenanthrene,
pyrene, acenaphthene, fluoranthenetrans-stilbene, benzil,
thianthrene, thioxanthen-9-one, diphenyl sulfone, hexachlo-
robenzene, ferrocene, fullerene, diuron, monuron, and 2-hy-
droxybenzoic acid, as discussed in the Introduction. The
present correlations are the first for the remaining 64 solutes.

For the further discussion the QSPR models are organized
according to solvent class. Definitions and discussions of
the most pertinent descriptors are given throughout the text,
and all are described fully in Table 4 of the Supporting
Information.

Aliphatic Hydrocarbons and Chlorocompounds.As a
general trend observed in Table 1, we note that the statistical
quality of the QSPR models is higher for branched and cyclic
hydrocarbons than for normal alkanes. Thus,n-octane shows

a squared correlation coefficientR2 ) 0.884, while its
isomers 2,3,4-trimethylpentane, 2,5-dimethylhexane, and
ethylcyclohexane haveR2 values equal to 0.942, 0.923, and
0.946, respectively. Analysis of the variances also supports
this trend: 0.037 against 0.014, 0.020, and 0.015, respec-
tively. The descriptors selected for eqs 1-14 do not allow a
uniform way of reasoning the solvating properties of different
solvents with respect to alkane solutes. The most frequently
occurred descriptors are geometrical, electronic, and MO-
derived ones, with the minor contribution from topological
indices.

Chlorosubstituted alkanes demonstrate less encouraging
correlation results; this is probably due to the above-
mentioned diversity of the original solubility data and the
strongly nonlinear character of the intense polar interactions
within the solvent media. The description of the possible
nonlinear character of polar interactions with descriptors that
account for nonlinearity and application of methods (neutral
networks, etc.) that also account for nonlinearities will be
the subject of a future study.

Electrostatic factors are of primary importance in the
solubility of chlorocompounds. Each of eqs 15-18 contains
either atomic charges (net or relative) or polar surface area
descriptors. Among the more important quantum chemical
descriptors, we mention the maximumπ-π bond order,Pπ-
πmax, present in eq 15 for dichloromethane, and the highest
vibrational frequency of the transition dipole,νTD

h , which
occurs in eq 17 for carbon tetrachloride. The MOPAC
calculated heat capacity normalized by the number of atoms
in the molecule contributes negatively to the equation for
highly chlorinated species such as chloroform and carbon
tetrachloride, in eqs 16 and 17. Topological features of
chlorocompounds are of lesser importance in their charac-
terization; the only topological index found is the Kier shape
index of the second-order,2κ, in eq 15.

Aromatic Hydrocarbons and Halogenated Aromatics.
The correlation results for aromatic and heteroaromatic
solutes range from modest for toluene (R2 ) 0.604;R2

cv )

Table 2 (Continued)

no. QSPR model

Organic Acids
61 log L ) 10.367+ 0.066µ - 6.462qA

min - 0.015R + 6.082FNSA(2) - 0.225∆EHOMO
LUMO

62 log L ) - 1.723+ 1.211nA
max - 1.670RNCG+ 0.102HACPSA(2) + 2.550æbond

max

63 log L ) 1.057- 0.017PNSA(1) - 1.345qnet
min + 3.429nA

max + 0.307µ + 80.455Nh C

64 log L ) 5.405-1.127WNSA(3) - 0.0432CIC - 2.414RNCG- 4.945HDFPSA(2)

65 log L ) 4.759+ 1.270J - 4.050HDFPSA(2) - 0.031∆Stot + 0.125∆EHOMO
LUMO

66 log L ) 9.813+ 55.444Pσ-σ
max + 1.905nA

max + 0.328EHOMO - 1.156HAHDSAxTMSA
2

67 log L ) 29.474-0.971æantibond
max - 0.196PPSA(3) - 18.017PH

min

68 log L ) 8.568+ 1.574NHA + 1.269µhyb
tot - 0.015W - 1.554FHBSA

Dipolar Aprotic Species
69 log L ) 3.890-1.635FPSA(1) - 0.0732øν + 7.645FPSA(3)

70 log L ) 2.931+ 0.0057PNSA(1) - 0.0061PPSA(3) + 11.787HAFCPSA(2) - 0.0012∆Hf
Vib/NA + 0.224qCnet

max

71 log L ) 4.634-0.153ELUMO + 0.046RPCS- 0.038∆Srot

72 log L ) 6.731-0.142ELUMO + 0.039RPCS- 0.0069PNSA(3) - 0.069∆Strans

73 log L ) 3.408+ 50.926IB/NA + 1.9621BIC + 0.133µp-ch
tot

74 log L ) 2.925+ 2.122∆Cp
rot/NA - 6.864FNSA(2) + 23.351qA

max

75 log L ) 35.846-5.550RNCG+ 0.033PPSA(3) - 0.189∆EHOMO
LUMO + 0.481∆Cp/NA - 0.840En-n

min (H - C)
76 log L ) 5.157+ 7.258qC

min - 0.080∆Strans + 0.287Pπ-π
max + 0.0060PNSA(1) - 2.807qA

min

77 log L ) 3.055+ 34.448EhC - 6.566FNSA(2) - 0.0021∆Hf
Vib/NA + 0.042µp-ch

tot + 0.164νTD
h

78 log L ) 4.799+ 0.185∆Srot/NA - 2.530nA
min + 0.018RPCS- 0.0018∆Hf

Vib/NA + 14.982NC
max

79 log L ) 3.912- 0.137ELUMO + 0.088RPCS- 0.014Φ
80 log L ) 29.191- 0.0672κ + 0.181µp-ch

tot + 0.225Pπ-π
max - 26.836P σ-σ

max
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0.355) to excellent for diphenyl sulfone (R2 ) 0.977;R2
cv )

0.966). It is still difficult to account for all the driving forces
exerted on the solvation of aromatic compounds. This is
perhaps because of significant interplay of the different
effects of conjugation, hyperconjugation, induction, polar
resonance, etc. Again, as in the case of aliphatic chlorocom-
pounds, electrostatic descriptors play the major role. Partial
surface areas of different types are terms in almost all the
QSPR equations corresponding to this class of compounds
(eqs 19-40). Hydrogen bond descriptors are also important
in these equations. Descriptors of the HDCA type (hydrogen
bond donor charged surface area) and HASA type (hydrogen
bond acceptor surface area) are present in eqs 19, 20, and
25-31. Evidently, a solvent’s hydrogen bonding ability is
important in the solvation of aromatic and polynuclear
aromatic hydrocarbons. Quantum chemical descriptors, cod-
ing the propensity of compounds to dispersion interaction,
such as the HOMO (EHOMO) and LUMO (ELUMO) energies
and the HOMO-LUMO energy gap (∆EHOMO

LUMO), appear in
10 of 22 equations. In accordance with their physical
meaning,EHOMO bears the positive sign in all the equations,
whereasELUMO bears the negative one, with the∆EHOMO

LUMO

being always negative.
Aromatic chlorocompounds such as chlorobenzene and

hexachlorobenzene are described predominantly by electro-
static descriptors. Because of the marked tendency of
chlorobenzene to participate in dipole-dipole interactions
(due to its rather high dipole moment), the solvent dipole
moment appears in eq 35 with a positive contribution.

Alcohols. The general trend is an increase in statistical
characteristics (R2, s2) as the size of the alkyl radical
increases. There are two exceptions: 1-hexanol (R2 ) 0.906)
and 2-propanol (R2 ) 0.894). On the other hand, two other
branched alcohols, 2-methyl-1-propanol and 2-methyl-2-
propanol, are characterized with rather high values ofR2:
0.976 and 0.960, respectively. Methanol as a solute shows
rather good results withR2 ) 0.917 ands2 ) 0.076. One
can observe a steady growth of the statistical parameters
through ethanol to 1-heptanol. The latter hasR2 ) 0.976
and a rather small variance of 0.007. The QSPR results for
phenol, classified with alcohols in this treatment, are rather
promising (R2 ) 0.972 ands2 ) 0.012) despite its increased
acidity as compared to aliphatic alcohols.

The electrostatic interactions are represented in QSPR
models 41-45, 47, and 49-50 by the atomic charges and
dipole moments. The electrostatic descriptors used most
frequently are the hybridization component of the molecular
dipole, µhyb

tot (6 of 11 models), and the minimum (or
maximum) atomic charges on carbon atom and on a generic
atom, qC

min and qA
max, respectively. Another electrostatic

descriptor, found in eqs 41-43 for the three simplest
alcohols, is the polarity parameter (Pf

2), a function of
atomic charges and the squared distance between the atoms.
All the electrostatic descriptors in the models corresponding
to alcohols bring a positive contribution to the solubility.
This observation implies that, other things being equal, the
degree of transfer to the solvent phase from the gas phase is
greater for high-polarity compounds.

Frontier molecular orbital indices such as the average
electrophilic reactivity index for carbon atoms (EhC), the
average nucleophilic reactivity index for carbon atoms (Nh C),

and the minimum atomic orbital electronic population
(nA

min) are also important in the description of dispersion
forces and other weak solvation effects.

Contributions from cavity-forming and dispersion forces,
which are also significant in alcohol solutions, are reflected
by a set of geometrical and topological descriptors such as
the Balaban index (eq 51), the information topological indices
2IC and 2CIC (eqs 43, 44, and 50), and the moments of
inertia along axes B or C (eqs 41, 43, 47, and 48).

Organic Bases.The best correlations are obtained for
simple aliphatic amines. Ethyl-,n-propyl-, andn-butylamine
haveR2 ) 0.974, 0.996, and 0.978, respectively. The variance
value forn-propylamine is extremely low at 0.0006. Aniline,
the simplest aromatic amine, also has good statistical features,
R2 ) 0.956 ands2 ) 0.032. For the twopara-nitrocom-
pounds, 4-nitroaniline and 4-nitro-N,N-dimethylaniline, the
correlation results are not so high, especially for 4-nitro-
aniline: R2 ) 0.806. The complex nature of the electronic
charge distribution (driven by the pronounced resonance
conjugation between the nitro and amino groups) combines
in 4-nitroaniline, with a possible implication for hydrogen
bond formation and proton-transfer processes.

The solvation processes of the nitrogen bases appear to
be dominated by electrostatic, dispersion, and hydrogen bond
forces encoded in descriptors presented in Table 2, lines 52-
60. The dipole momentµ or its function, the image of the
Onsager-Kirkwood solvation energy (µ2/MW), are terms in
eqs 54 and 56. Other electrostatic descriptors are the relative
positive charged surface area (RPCS), the partial atomic
charge on a carbon atom (qC

min), the polar partial surface
areas such asFNSA(3), FPSA(1), and CPSA(2), and the
topographic electronic index over all atoms’ pairs (TE

pairs).

Dispersion forces can be related to the MO entities such
as the LUMO energy (eqs 52 and 60), the HOMO-1 energy,
the HOMO-LUMO energy gap, and the maximum atomic
orbital electronic population (nA

max). As an illustration of
hydrogen bonding descriptors we refer to theH-acceptor
dependent HDCA-2 (HAHDCA(2)), the newH-donors charged
partial surface area (HACPSA(2)), and the maximumσ-π bond
order, which can be loosely related to the basicity of the
solvents under study. The bulk properties of the solvents are
represented in eqs 52-56 and eqs 58-59 by the moments
of inertia (along axes A and C), the Randic indices of order
2 and 3, and the Kier flexibility index.

Organic Acids. Of the eight solutes with an acidic nature,
four are benzoic acid and substituted benzoic acids, one is a
derivative of phenylacetic acid (diclofenac), one is a deriva-
tive of benzeneacetic acid, and two are rather acidic
hydroxyaromatic compounds (haloperidol and paracetamol).
The QSPR models for ibuprofen and diclofenac are of poor
statistical quality (R2

cv is equal to 0.549 and 0.579, respec-
tively), probably because of the complex multifunctional
structure of these solutes; another relevant factor could be
the small number of experimental data points used in the
modeling (24 and 23, respectively). A small data set is also
the likely reason for the significant gap betweenR2

cv andR2

in the case of haloperidol: 0.934 vs. 0.815 with only 17 data
points. The best five-parameter model was obtained for
4-hydroxybenzoic acid (R2 ) 0.936; R2

cv ) 0.862; s2 )
0.094).
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The effects of the acidic nature on the solvation of the
solutes under discussion is apparently reflected in eqs 61-
68 by the participation of solvent electrostatic descriptors
such as the following: the dipole moment (3 of 8 models),
the partial and relative atomic charges (qA

min and RNCG),
and the polar surface areas (FNSA(2), PNSA(1), WNSA(3), and
PPSA(3)). Hydrogen bonding patterns, which are very im-
portant in the solvation of organic acids, are represented in
eqs 62 and 64-68 by the following hydrogen bond descrip-
tors: the newH-donor charged partial surface area (HACP-
SA(2)), the newH-donor fractional partial positive surface
area (HDFPSA(2)), theH-acceptor dependent HDSA-2, (HAHD-
SA(2)), the fractionalH-bonding surface area (HBSA/TMSA),
and the count of hydrogen acceptor sites (NHA). Cavity-
forming and dispersion forces are coded by molecular
polarizability, the energy of the HOMO level and the gap
between the HOMO and LUMO, and a set of topological
indices such as the Balaban index (J), the Wiener index (W),
and the second-order complementary information content
(2CIC).

Dipolar Aprotic Species.Twelve dipolar aprotic species
are represented by the following solvents, lines 69-80 of
Tables 1 and 2: 6 esters, 3 ketones, 1 nitrile, 1 nitrocom-
pound, and 1 six-membered ring ether. All of the solutes
are characterized by good to excellent statistical models. The
statistically highest correlation coefficients were shown for
2-hexanone (R2 ) 0.993;R2

cv ) 0.990;s2 ) 0.001); lower
but convincing results were obtained for 2-butanone (R2 )
0.913;R2

cv ) 0.871;s2 ) 0.017). We note the low values of
the variance (s2, the squared standard deviation): just two
equations display larges2 values (0.047 and 0.034 for
acetonitrile and nitromethane, respectively).

The distribution of electronic charge, expressed in terms
of the partial positively or negatively charged surface area
and atomic charges, plays a key role in the solvation of
aprotic dipolar solutes. Ten of 12 QSPR models derived
include different partial surface areas such asFPSA(1),
FPSA(3), PNSA(1), PPSA(3), and FNSA(2). The superscripts
indicate the type of atomic charges used in weighting the
polar surface areas.33 Partial and relative atomic charges
(qCnet

max, qA
max, qA

min, qC
min, RPCS, and RNCG, see Table 4 for

keys for descriptors) are found in 8 of 12 equations. The
dipole influence is accounted for by the point charge
component of the molecular dipole (µp-ch

tot ) in eqs 73, 77,
and 80. As for the solvent bulk properties, which exert
influence on the dipolar species phase distribution, the
entropic Kier-Hall valence connectivity index of order 2
(2øν), the Kier-Hall flexibility index (Φ), the Kier shape
index of order 2, and the first-order average bonding
information content (1BIC). In eq 73, the moment of inertia
along axis B is chosen as an additional cavity-formation term,
reflecting the complex geometry and the high flexibility of
pentyl acetate.

GENERAL CONCLUSIONS

A pool of approximately 800 descriptors was analyzed
using the heuristic method to give correlation equations for
80 solutes in a range of solvents. Sixty-four of the solutes
are studied by QSPR methodology for the first time. The
predictive quality of several equations suffers from a
significant degree of clustering in the data sets: for 40 of

the solutes (lines 2, 4-6, 10, 12-25, 29, 31-32, 35, 37-
38, 44, 52, 56, 60-68, 75, and 80 in Table 1) differences
between theR2 and R2

cv values are higher than 0.05 inR2

units. Most probably the data clustering is due to experi-
mental uncertainties of the measurements and the nonuniform
character of some particular data sets (e.g. many nonpolar
species and few polar alcohols or acids).

The descriptive quality of the equations is in good
agreement with our understanding of solute-solvent interac-
tions, as illustrated in this paper and in previous work. The
descriptors contained in the equations emphasize nonspecific
interactions between solute and solvent, which are driven
by the dipole-dipole interactions, hydrogen bond donor/
acceptor functionality, and bulk-related properties of solute
and solvent molecules. Thus, the descriptors reflect the
electronic charge distribution, surface area, and various other
structural properties of the compounds.
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