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ABSTRACT 

 

High performance liquid chromatography (HPLC) with ultraviolet (UV) 

spectrophotometric detection is a common method for analyzing reaction products in 

organic chemistry. This procedure would benefit from a computational model for 

predicting the relative response of organic molecules. Models are now reported for the 

prediction of the integrated UV absorbance for a diverse set of organic compounds using 

a quantitative structure- property relationship (QSPR) approach. A seven-descriptor 

linear correlation with a squared correlation coefficient (R2) of 0.815 is reported for a 
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dataset of 521 compounds. Using the sum of ZINDO oscillator strengths in the 

integration range as an additional descriptor allowed reduction in the number of 

descriptors producing a robust model for 460 compounds with 5 descriptors and a 

squared correlation coefficient 0.857. The descriptors used in the models are discussed 

with respect to the physical nature of the UV absorption process. 

 

 

INTRODUCTION 

 
In organic synthesis there have been two traditional methods for performing 

quantitative analysis. For novel molecules, the method has been to purify the new 

structure to homogeneity and then weigh the sample. For known samples, a pure 

reference standard could be obtained which allowed for chromatographic quantitation in 

comparison to the new batch. In the modern drug discovery laboratory, analysts are asked 

to quantify the amount of target compound in hundreds of novel samples each day. These 

molecules are made in sub-milligram amounts and have never been synthesized before. 

The only information available is the structure of the molecule and properties which can 

reliably be calculated from the structure. Because the new tools of combinatorial 

chemistry allow so many compounds to be synthesized in a short time, the old strategy of 

purify and weigh is no longer satisfactory 

The analytical chemistry community has only begun to address this need1-4. 

Approaches to quantitation of unknowns include (i)NMR5,6; (ii)HPLC with evaporative 

light scattering detection7,8, and probably the most successful solution to this problem, 

(iii) the recent development and popularization of the combustion-based 
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chemiluminescent nitrogen detector (CLND) for HPLC9,10. Response in this latter 

detector can be predicted solely from structure because all nitrogens burn to the same 

analyte. The application of this detector to assessing high throughput parallel synthesis is 

rapidly increasing in popularity11. 

A specific application of interest to Affymax is the need to quantify compounds 

synthesized in encoded split-pool libraries for high throughput screening. These 

experiments are done for the quality control of a split pool encoded library12,13. In this 

technique, sub-nanomole amounts of compound are synthesized. Their structures are 

confirmed by LC/MS while the LC/UV signal is used to assess purity. It is difficult to 

assess these samples for amount because none of the standard quantitation techniques 

(weighing, NMR,ELSD, CLND) has sufficient sensitivity. Better knowledge of released 

concentration could improve our understanding of hit rates and overall success in bead-

based high throughput screening14. 

 A second application for generic quantitation is in the impurity profiles of drug 

substance for regulatory approval. In this process a relatively pure substance is tested by 

HPLC/UV/MS. All impurities above 0.1% should be identified and quantified. The MS 

data and knowledge of the process are often sufficient to identify the impurities but 

quantitation requires the laborious synthesis of a standard pure sample.  

We now report attempts to predict response in typical HPLC UV detectors 

directly from structure.  This is a remarkably unexplored goal. Others have derivatized 

molecules so that a common chromophore can be used for quantitation15, but only one 

attempt to do generic UV intensity prediction could be found in the literature18. Such 

predictive capability would be very useful because UV is a nearly universal detector for 
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drug-like molecules: 85% of the structures in the MDDR (a database of drugs and 

candidate drugs16) contain an aromatic group and most of the others contain amides or 

other chromophores. In addition, HPLC with UV detection is very widely available as a 

routine analytical tool in the organic chemistry laboratory. Modern sophisticated diode 

array UV detectors are easy to use, rugged and reasonably priced. 

In the best case, we would like to predict the UV concentration of a compound to 

within 10% of its true value. But prediction schemes with more error, 20% or even 50% 

may be useful. Optimally, the procedure should be fast. It would be best if a chemist 

could draw a structure and have its predicted UV returned in a short time, as for 

CLOGP17. Also, a calculation for the 96 numbers needed for quantitative analysis of a 

parallel synthesis plate should not take hours.  

 

Theory of UV quantitation 

 

Three typical UV spectra are shown as Fig. 1.  Normally, HPLC detection is done 

at a single wavelength; 220 nm is commonly chosen as the most generic wavelength 

because of cases like that of Fig 1a. However, the slope of the absorbance spectrum is 

often very steep at any single wavelength. Moreover a single wavelength poorly captures 

the magnitude of the absorbance, the feature that is most directly structure-related and 

hence predictable18. For these reasons, we have chosen to integrate the entire spectrum. 

The practical lower limit to this sum is 220 nm due to HPLC solvent absorbance. The 

upper limit is arbitrarily set to 360 nm as drugs rarely have absorbance in the visible. 

Beer’s law states that the light absorption at a single wavelength is proportional to 

the sample concentration 
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A=εbc       (1) 

where ε is the extinction at that wavelength and b is the light path length. This equation 

holds at each wavelength increment so, by summing a set of these equations, it is 

apparent that 

∫A=∫εbc       (2) 

Since b and c are wavelength independent, the area under the absorbance curve is 

proportional to a compound dependent overall extinction number (call it Ε)  

∫A=Εbc       (3) 

This extinction can be thought of as the average extinction times the wavelength range. 

Equation 3 will hold for either single wavelength UV detection or broadband (220-360 

nm) detection; so we drop the integral henceforth. This concept of integrating the UV 

resonances is not novel. It has been used recently to improve signal to noise for trace 

analysis instrumentation19. 

 In HPLC, we need to deal with peaks and changing concentration profiles. It is 

useful to consider breaking a peak into time segments. For each segment the absorbance 

will be proportional to the concentration at that moment.  

Ai=Εbci        (4) 

The area of each time segment i will be  

   Segment area=Aiti =Εbciti    (5) 

The summed areas will be the area of the chromatographic peak 

   area =ΕbΣciti      (6) 
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with Εb outside the sum, since the Ε and b are constants. Now replace the ci with the 

equivalent amount (ai) divided by the volume (vi) 

   area =ΕbΣ(ai/vi )ti     (7) 

For a constant flow HPLC method, the volume per unit time is a constant and can be 

taken out of the sum and included in a new constant term 

   area =Εb*Σai      (8) 

Finally, the sum of the amounts in each time segment (excluding on-column losses) is the 

total amount injected. The key equation then is 

   LC peak area =Ε I N      (9) 

where I is an instrumental factor which includes the UV cell pathlength and the flow rate, 

and N is the number of moles injected. For cases where the analyst wants to measure 

injected sample concentration instead of injected amount, the equation is  

   LC peak area =Ε I c     (10) 

Where the I now includes an injection volume contribution. The Ε values will come from 

the prediction scheme. The I values can be measured for each instrument and method 

using standard compounds. 

To predict the characteristics of UV absorption peaks, several quantum chemical 

models have been developed. The transition frequency can be predicted by calculating 

the energies of excited electronic states by a configuration interaction (CI) calculation. 

The intensity of the transitions or oscillator strength can be obtained from the transition 

dipole moment, which is proportional to the change in the electric charge distribution 

occurring during excitation. Theoretical oscillator strength is the intensity of this 
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electronic energy transition; it corresponds to the height of a widthless transition. The 

experimental oscillator strength20 is measured by integrating the area under an 

absorbance band using equation 11. 

∫−= (11)                                                                )(910  319.4)( νν dexIfosc

 

One of the most successful models for the calculation of UV spectra is the 

ZINDO modification of the Intermediate Neglect of Differential Overlap method 21. 

Since most of the spectra are taken of molecules in solution, treatment of solvent effects 

on UV spectra has been an area of active research. The explicit consideration of solvent 

molecules in the quantum mechanical self-consistent field molecular orbital calculations 

is usually not feasible. Therefore, various continuum solvent models (CSM) that treat 

solvent as a simple dielectric continuum have been developed. Traditional CSM is the 

self consistent reaction field (SCRF) model22that has been shown to reproduce the shifts 

of absorption peaks in aprotic solvents very well23. Another continuum solvation model - 

conductor-like screening model (COSMO) when implemented in the framework of 

MOPAC reproduces solvatochromic shifts qualitatively in AMI calculations24. Specific 

effects of protic solvents on the UV spectra of uracil and uracil derivatives have been 

studied using hybrid quantum chemical and molecular mechanics method25.  

Theoretical models have also been developed to approximate the band shape of 

molecular electronic transitions. Much of the broadening of spectral lines occurs because 

there are many vibrational and rotational transitions with slightly different energies. 

Another cause of line broadening is the anisotropic interaction with the medium 

(solvent). An empirical method for reproducing the band shape from a single geometric 
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structure has been developed20 that is significantly faster than molecular 

dynamics approach and potentially applicable for predicting the appearance of the spectra 

of large molecular systems. A new recently described parameterization of INDO is 

equally good for both geometry optimization and spectroscopy 26. But none of these 

techniques does a particularly good job in predicting oscillator strengths (absorbance 

intensities). 

A unified treatment of the absorption intensities is further complicated by large 

differences in the oscillator strengths for transitions of different symmetry. Moreover, 

additional solvent-induced broadening of the spectral bands arises from the variation of 

the local environment of the chromophoric solute molecule in the condensed medium. 

The latter is caused by the thermal motion of the surrounding solvent molecules. At any 

given instant of time, there is a distribution of differently solvated solute molecules, each 

of which has characteristic transition energy to the excited state. The resulting 

distribution of the transition energies leads to the broadening of the spectral band. The 

theoretical assessment of the solvent-induced spectral broadening has thus to rely on a 

proper statistical treatment of the solvent distribution around the chromophoric solute 

molecule, both in the ground and in the excited state of the latter27. 

A QSPR approach has previously been applied to the prediction of absorption 

wave numbers and molar absorptivities18. In this study various structure indices such as 

the integrated molecular transform and normalized molecular moment indices were used 

to establish the correlation model. Modeling of molar absorptivity was not successful in 

this study evidently because absorptivity at a single wavelength (maximum) rather than 

the integrated area was used. 
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The aim of the current study is to develop QSPR models for the rationalization 

and prediction of the ultraviolet integrated absorption for a diverse set of organic 

compounds at a precision level suitable for application to analytical work. The QSPR 

method is applied in the framework of the CODESSA program28: CODESSA has 

successfully correlated many properties including boiling points29a,b, gas chromatographic 

response factors29c,d, critical micelle concentrations29g,h, solubilities29g,h, polymer glass 

transition temperatures29i,j, refractive indices29k,l, viscosities29m, and solvent effects on 

decarboxylation rates29n; for reviews see29o,p. 

 

METHODOLOGY 

 

The availability of UV data has been reviewed recently30. The UV spectral data 

for this study was taken from the Upstream Solutions electronic database (Upstream 

Solutions, GmbH, Hergiswil, Switzerland; www.upstream.ch). This collection was 

originally published as the UV-VIS Atlas of Organic Compounds31. After transferring the 

entire collection into ISIS and Oracle databases, a set of 521 small organic compounds 

and spectra were selected for study. 

The prediction scheme is designed to correlate structural descriptors to the 

integrated UV spectrum from 220-360 nm.  An Oracle PL/SQL procedure was written to 

do the integration. First, the data below 220 and above 360 is ignored. If necessary, 

interpolation or extrapolation (limited to 5 nm) is used to generate good endpoints. The 

algorithm then integrates the data between the wavelengths using the trapezoid rule.  

Area220-360=Σ(λi+1-λi) x (εi+εi+1)/2    (12) 
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Correlations were produced from HM PRO (the Heuristic method for CODESSA 

PRO), which has an algorithm consisting of 4 major parts: 

1. The 1-parameter descriptors selection. The selection is based on the squared 

correlation coefficients, Fisher F-criteria, and Student t-criteria. Highly 

intercorrelated descriptors and descriptors with insignificant variance are 

eliminated. 

2. Pair-wise selection. This selection is made on the basis of squared correlation 

coefficient s and Fisher F-criteria. 

3. Expanding/contracting stage. The unexpanded correlations in the correlation 

set are expanded by adding previously unselected descriptor. The number of 

correlations added in this manner can be limited by branching criteria (number 

of added correlations per each expansion), limiting F-criteria (normalized or 

not), squared intercorrelation coefficients, and standard errors. Correlations 

with the maximum number of descriptor (given parameter) allowed are not 

expanded. This stage will be repeated until a stop event occurs, which can be 

any/all of following: 

a. The correlation set in the memory is overfilled. When the value of 

fitness function is less than minimal in the set, it is not stored at all 

after overfilling. In this case, if correlation is inserted into the set, the 

correlation with the worst value of the fitness function is eliminated. 

The fitness function is defined as w = (R2Fn)/(Ns2) where R2 is the 

squared correlation coefficient, F is Fisher criterion, N is the number 

of descriptors in the model and s is standard deviation. 
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b. Maximum number of iterations is reached. 

c. Time limit is reached. 

d. The correlation set does not have any correlation to expand/contract 

(full search is finished). 

4. The output stage. A predetermined number of the “best” correlations is printed 

out. Iterations for selecting for the printed correlations begin from the “best” 

correlations. For all correlation in the cycle, a full set of statistical parameters 

is calculated including intercorrelations of the descriptors (one to all others), 

cross-validated squared correlation coefficients, etc. The parameters of the 

method are defined by the set of the selection criteria. For any correlation, a 

full list of the predecessors in order of calculation can be printed, on the basis 

of best correlations with subsets of the descriptors until 1-parameter 

correlation will be printed. 

The analysis is subject to the condition that intercorrelation coefficient of a descriptor 

with respect to all other descriptors in the model remains below a predetermined level 

(0.5 in the current work). 

ZINDO calculations were performed using the MOS-F package from Schrödinger 

Inc32. Each molecular geometry was first optimized with Corina33 and then submitted to 

the program which outputs a set of chromophore absorbance frequencies and oscillator 

strengths. 
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RESULTS AND DISCUSSION 

 

To this point the argument has been framed in wavelength terms. UV absorbance 

is caused by energy absorbance by a molecule causing electrons to change energy states. 

The prediction of extinction will involve analysis of differences in energy states. 

Therefore it could have been advantageous to consider absorbance in frequency space 

rather than wavelength space since energy and frequency are directly related and 

wavelength and frequency are reciprocally related. However, Figure 2 shows a 

correlation coefficient of 0.97 between integrated area under the wavelength curve and 

integrated area under the frequency curve for the 521 compounds chosen for this study; 

no further consideration of frequency is felt necessary. 

The spectra in our dataset have been collected in many solvents (typically ethanol 

or alkanes). The solvent for which we desire information is the solvent composition at the 

moment of chromatographic elution. The composition of gradients in high throughput 

LC/UV/MS applications has largely been standardized to acetonitrile/water with pH 

adjustment using formic acid or TFA34. Methods for estimating the protonating power of 

these solvent mixtures is available35. While the energy of absorbance can be quite solvent 

dependent, the oscillator strength may not be too different in most cases36. Refractive 

index is a key contributor to solvent effects on oscillator strength36; but luckily, 

acetonitrile, water and their mixtures have essentially constant η37. Table 1 shows 4 

molecules and their relative integrated absorbances in different solvents38. (i) The benzyl 

alcohol spectrum is not much effected by solvent. (ii) Nitroaniline shows a large solvent 

effect: in water more of its intensity is found below 360 nm compared to in ethanol. 
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Molecules which have strong absorption near 360 nm will need to be treated specially or 

excluded. (iii) Crotonaldehyde has all of its absorbance at low wavelength and most of 

this falls below 220 nm in hexane but above 220 nm in ethanol. Molecules which have all 

of their absorption below 250 nm will present special solvent effect problems. (iv) 

Aniline is effected by pH: its protonated form absorbs weakly while the neutral form has 

a strong absorbance. Thus, molecules must be represented in the correct charged form for 

their spectra. Many QSPR and quantum calculations do not deal well with formal 

charges. 

Subtle steric effects can have big impacts on UV spectra. For example, Table 2 

compares the maximum absorbance of a set of substituted anilines39. Crowding causes 

non-planarity of functional groups, drastically lowering the absorbance in the 

2-t-butyl-N,N-dimethylaniline spectrum. This steric issue requires that structural 

descriptors be calculated from fully energy-minimized structures. 

The entire molecule must be considered in predicting UV. It would be simplifying 

to isolate and add contributions from single chromophores. But chromophores interact, 

even through multiple sp3 carbons, as shown by Table 3 for a set of benzene analogs. 

This hyperconjugation effect has been known for a long time40 but makes the success of a 

simple additivity scheme (a la CLOGP) highly unlikely for UV. 

The first QSPR attempt applying constitutional, topological, geometrical and 

electrostatic descriptors produced a 7-descriptor correlation equation (Eq. 13) with 

R2 = 0.7063, R2
cv = 0.6923, F = 175.54 and s = 3.5⋅105; see Fig. 3. The statistical 

parameters for this equation and other best equations with different numbers of 

descriptors in the range 1-7 are given in Table 4. 
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where Nb is the number of benzene rings, Nd, is the number of double bonds, Φ is the 

Kier flexibility index, V’M is the factorized molecular volume, PNSA3 is the atomic 

charge weighted partial negative surface area, Szx is ZX shadow area, and IC0  is zeroth 

average information content. 28.2 % of structures in the whole dataset (147 out of 521) 

were  predicted to within 20 % of relative error and 56.2 % of structures (293 out of 521) 

to within 50 % of relative error according to this equation. The number of data points 

lying outside the range of ±2σ (95 % confidence limit) from the predicted value was 23. 

In the next step, MOPAC SCF calculations were performed for the data set. 

Inclusion of the quantum chemical descriptors based on the output of MOPAC 

calculations improved the squared correlation coefficient R2 to give a 7-descriptor 

correlation equation (eq. 14) with R2 = 0. 8152, R2
cv = 0.7996, F = 322.06 and s = 2.8⋅105; 

see Fig. 4. Statistical parameters for this equation and the best equations with lower 

number of descriptors are given in Table 5. 
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where γ is gamma polarizability, (εLUMO- εHOMO) is HOMO - LUMO energy gap, Pc is the 

average bond order of a C atom, and  is the final heat of formation divided by the 

number of atoms. 36.5 % of structures in the whole dataset (190 out of 521) were 

a/n0
fH∆
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predicted to within 20 % of relative error and 61.2 % of structures (319 out of 521) to 

within 50 % of relative error according to this equation. The number of data points lying 

outside the range of ±2σ (95 % confidence limit) from the predicted value was 24. Most 

of these outliers are molecules with very low absorbance in the integration region 

(molecules with low wavelength absorption maxima). 

Most of the descriptors used in the first two equations are well interpreted and in 

good accordance with the physical picture of UV absorption process. The number of 

benzene rings and number of double bonds in equations 14 and 15 measure the 

unsaturation of the molecule. The average bond order of a C atom in Eq. 14 is also 

related to the unsaturation. Positive correlation coefficients are in good accordance with 

the fact that increase in the saturation of the molecule causes the shift of absorption 

maxima to higher frequencies outside the integration range. The negative correlation 

coefficient of ZX shadow area in Eq. 13 may be related to cavity formation in condensed 

media and solvent effects affecting UV spectra. Charge distribution-related descriptor 

PNSA3 in both equations may also be describing solvent effects. The second most 

significant descriptor in Eq. 14, polarizability, is related to charge migration or 

displacement during the transition from one electronic state to another. (εLUMO-εHOMO) 

approximates the energy difference between the electronic states, which determines the 

location of the absorption maximum. 

Since the molecules with only low wavelength absorbance were poorly predicted, a 

dataset of 255 compounds having at least 40 % of their UV absorbance above 250 nm 

was subjected to study. This selection excludes the spectra such as Figure 1a where only 

a small overall portion of the UV absorbance falls above 220 nm. For this dataset, 

15 



16 

heuristic correlation with 5 descriptors gave a model with R2 = 0.7426, R2
cv = 0.7177 and 

F = 141.98. The data is shown as Table 6, equation 15 and Figure 5.  

(15)                                       610  0.37)(3.11    310  1.23)  (6.01410  0.22)(1.10-

)HOMO - LUMO(510 0.37)(2.95- 5100.22)  (1.98110 0.33)  (3.17 A 

⋅±+⋅±+⋅±

−±⋅±+⋅±=

xySPPSA3

bN εεγ

 

where PPSA3 is the atomic charge weighted partial positive surface area for solvent 

accessible surfaces. The XY shadow area in this equation can be directly related to 

molecular cross-section of absorption. The total molecular 2-center exchange energy 

divided by number of atoms reflects the change in the Fermi correlation energy between 

the electrons localized on different atoms and is important in determining the spin 

properties of molecules. In this model, 114 structures (44.7 % of total) were predicted to 

within 20% of relative error. In addition 185 compounds (72.5 % of the total) were 

predicted to within 50% of the measured value. Equation 15 is not applicable to end-

absorption spectra such as Fig.1a but can be expected to give slightly increased reliability 

for the integrated intensity for the more common classes of spectra such as 1b and 1c. 

Scrutiny of the points in Fig. 5 revealed different populations for the spectra taken in 

different solvents. So heuristic correlations were performed for the subsets of 

absorbances measured in nonpolar solvents (75 structures) and ethanol (93 structures). 

The optimal equations were developed for different numbers of descriptors in the range 

of 1-5 for nonpolar solvents and in the range 1-9 for polar solvents. Plots of R2 and R2
cv 

values against the number of descriptors (not shown), provide guidance regarding the 

number of descriptors to retain in the models. The models with 5 descriptors (R2 = 

0.8581, R2
cv = 0.8274, F = 83.48) and 7 descriptors (R2 = 0.8041, R2

cv = 0.7455, 

F = 49.83) were retained for nonpolar and ethanol subsets, respectively. The descriptors 
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involved in these correlations are listed in Tables 7 and 8 in order of their statistical 

significance according to t-test. The respective correlation charts are depicted in Figures 

6 and 7. In the nonpolar set 59 % of structures (44 out of 75) and in the ethanol set 

60.2 % of structures (56 out of 93) were predicted to within 20 % of relative error. 

The separate correlations for the polar and non-polar groups does not reflect 

exclusively solvent effects. Rather this result points up a weakness in the current 

descriptors’ set. The descriptors which have been tested to date are inadequate to 

completely model the intensity of UV absorbance. Therefore, the next approach was to 

consider actually predicting UV absorbance with quantum mechanics and comparing this 

prediction to the database. The ZINDO program which is included in MOS-F works by 

identifying chromophores in a molecule, and then calculating the lambda max and 

estimating the oscillator strength. The output is a set of widthless absorbances as shown 

in Figure 8a. The software does not address the peak width issue20 which would be 

necessary to convert the sticks into peaks as shown in 8b. Nor does the software address 

the convolution of these peaks to give a true molecular spectrum as shown in Fig 8c. But 

it was hoped that the UV integration approach might obviate the need to fully understand 

peak widths. 

A limitation of the MOS-F software is that it is only parameterized for uncharged 

molecules. Therefore a set of 205 neutral compounds were selected. Each was structure 

optimized with Corina and then submitted to the UV prediction. Each predicted 

absorbance was artificially broadened with a 10 nm half-width gaussian shape to allow 

estimation of the percentage which would fall outside of our 220-360 nm range. After 

this correction, the oscillator strengths were summed and correlated to the integrated UV 
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absorbance. The result is shown as Fig 9. The correlation coefficient in this case is 0.77 

and offered no advantage over the earlier and computationally simpler results. 

In order to further improve the quality of the general model (Eq. 14), the ZINDO 

oscillator strengths were incorporated as external descriptors into a general QSPR 

treatment along with all other descriptors available from CODESSA. MOS-F calculations 

were performed with CNDO/S parameterization for a subset of 460 structures from the 

original dataset of 521 structures. For simplicity, the external descriptors Icndo were 

calculated as the sums of all oscillator strengths in the range 220-360 nm neglecting the 

absorbance that would fall outside this range. The “best” 1-5 descriptor models of the 

integrated absorption in wavelength scale were obtained by using CODESSA HM PRO. 

No correlations with intercorrelation coefficient less than 0.5 were found for more than 5 

descriptors using the correlation set in the upper segment of the fitness function of size 

100000. The statistical parameters of the models developed using CNDO/S calculation 

results as additional descriptors are presented in Table 9. 

Comparison of Tables 5 and 9 reveals that after including ZINDO calculation results 

the number of descriptors for the models with the same predictive power has been 

reduced significantly. The best model with 5 descriptors has R2 = 0.8573, R2
cv = 0.8431 

and is given in Equation 16 with the corresponding correlation chart in Figure 10. 
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According to this equation 42.8 % of compounds (197 out of 460) were predicted to 

within 20 % and 67.6 % of compounds (311 out of 460) to within 50 % of the measured 

value. The second most significant descriptor in Eq. 16, gamma polarizability γ, that 

appears also in Eqs. 14 and 15 is defined according to the following equation 
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32

6
1

2
1 EEE γβαµµ +++=′                                     (17) 

where E is the strength of the applied electrostatic field and µ ′  is the induced dipole 

moment. It can be related to the part of transition dipole moment explained by the third 

order contribution to the response of molecule’s dipole moment to the external 

electrostatic field.  

 

CONCLUSIONS 

 

The prediction of UV spectral intensity should be a useful computational tool in 

organic chemistry. This capability would add to the armamentarium of spectroscopy and 

chromatography that analytical chemists bring to the increasing need for data in support 

of high throughput organic synthesis. When we started this project, no UV spectra were 

commercially available in electronic form. Our interest led to the release of the Upstream 

database. We would like to see a similar digitization of the Lang collection38 and the 

other great collections30 from the golden age of UV spectroscopy. 

The development of highly significant QSAR or QSPR equations by extraction of 

molecular descriptors from large descriptor spaces has been successful for the prediction 

of many physical properties and biological activity of chemical compounds29. The present 

work demonstrates that analogous QSPR equations can be developed for the prediction of 

UV absorption area. Importantly, the descriptors employed in the best correlation 

equations are clearly relevant to the physical nature of UV absorption process. 

These descriptors are related to polarizability, saturation, spin properties, energy 

difference between the electronic states and solvents effects. 
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Future refinements in UV prediction will require further improvement in 

parameterization26 and better algorithms20 for calculating oscillator strengths, spectral 

peak widths and solvent effects. 
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LEGENDS TO FIGURES 

 

1. Example UV spectra from the database. Each spectrum was collected in heptane. 

a) 1,3-pentadiene, b) pyridine –2-carboxaldehyde, c). 2-iodopropane. 

2. Correlation of integrated area under the wavelength curve vs integrated area under 

the frequency curve. 

3. Correlation of integrated area and CODESSA non-quantum descriptors; equation 

13, table 4. 

4. Correlation of integrated area and CODESSA quantum descriptors; equation 14 

5. Correlation of integrated area and CODESSA quantum descriptors, excluding 

spectra with end absorption only ; equation 15 
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6. Correlation of integrated area and CODESSA quantum descriptors for 75 spectra 

recorded in nonpolar solvents 

7. Correlation of integrated area and CODESSA quantum descriptors for 93 spectra 

taken in ethanol 

8. Simulated UV spectra showing a widthless absorbance as predicted in ZINDO 

(a); peaks broadened with a fixed peak width (b). and a simulated spectrum 

truncated at 220 and 360 nm (c) 

9. Correlation of integrated area and ZINDO predicted UV absorbance for 205 

neutral molecules. 

10. Correlation chart for the 3-descriptor model with ZINDO oscillator strengths as 

additional descriptors.
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Table 1. Solvent effects on relative integrated UV extinction from 220-360 nm 

 

O
OH

HO NO2

NH2

CHO

NH2

Solvent

EtOH
CH3CN
Hexane
H2O, pH=2
H2O, pH=8

1.13 
1.14
1
1.08
-

.74
-
1
1.3
-

3.09
-
1
-
-

-
-
-
1
88  

 

 

 

Table 2. Effect of steric crowding on maximum UV absorbance.  

 

Compound    εmax 

Aniline    9130 

N,N-dimethylaniline   15500 

2-(t-butyl)aniline   7850 

2-t-butyl-N,N-dimethylaniline 630 
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Table 3. Effect of conjugation and hyperconjugation on extinction at 220 and 250 nm 

 

Compound     Extinction at 

    220      250  

Toluene    1900         69  

Biphenyl    4500   16000 

Diphenylmethane   8300       380  

1,2-Diphenylethane   6300       260
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Table 4. Statistical parameters of seven best correlations for the full dataset without quantum 

chemical descriptors (Eq. 13). 

 

Number of descriptors       R2        R2
cv         F             s 

1   0.3728  0.3626  307.23  5.04·105 

2   0.6034  0.5970  392.48  4.02·105 

3   0.6343  0.6249  297.71  3.86·105 

4   0.6644  0.6543  254.34  3.70·105 

5   0.6816  0.6724  219.68  3.61·105 

6   0.6945  0.6815  194.01  3.54·105 

7   0.7063  0.6923  175.54  3.47·105 
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Table 5. Statistical parameters of 7 best correlations for the full dataset with quantum 

chemical descriptors (Eq. 14). 

Number of descriptors       R2        R2
cv         F             s 

1   0.4730  0.4639  464.10  4.62·105 

2   0.6035  0.5941  392.64  4.01·105 

3   0.7342  0.7272  474.24  3.29·105 

4   0.7618  0.7467  410.96  3.12·105 

5   0.7838  0.7653  371.93  2.97·105 

6   0.8037  0.7870  349.39  2.84·105 

7   0.8152  0.7996  322.06  2.75·105 
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Table 6. Statistical parameters of 5 best correlations for the dataset of 255 compounds with at 

least 40 % of their UV absorbance above 250 nm (Eq. 15). 

Number of descriptors       R2        R2
cv         F             s 

1   0.4674  0.4503  219.38  4.86·105 

2   0.6061  0.5653  191.60  4.18·105 

3   0.7162  0.6277  208.59  3.56·105 

4   0.7181  0.6284  157.33  3.55·105 

5   0.7426  0.7177  141.98  3.40·105 
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Table 7. Five-parameter correlation for the nonpolar subset of 75 compounds 

X ± ∆X t-test name of the descriptor 

(-2.09 ± 0.26)⋅106 -4.3118 Intercept 

(2.34 ± 0.28)⋅105 8.45 Number of benzene rings 

(2.54 ± 0.45)⋅106 5.6434 Average bond order for atom C 

(7.02 ± 1.36) 5.1577 (1/6) X Gamma polarizability 

-(4.72 ± 0.96)⋅105 -4.9219 LUMO energy 

-(2.18 ± 0.67)⋅106 -3.2329 RPCG relative positive charge 
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Table 8. Seven-parameter correlation for the ethanol subset of 93 structures. 

X ± ∆X t-test name of the descriptor 

-(3.03 ± 1.16)⋅106 -2.6029 Intercept 

(4.38 ± 0.59)⋅101 7.4540 (1/6) X Gamma polarizability 

(2.72 ± 0.44)⋅106 6.2394 Average bond order for atom C 

-(3.07 ± 0.62)⋅105 -4.9532 HOMO-LUMO energy gap 

(1.57 ± 0.35)⋅105 4.5053 Number of rings 

(1.40 ± 0.32)⋅105 4.3099 Number of benzene rings 

(4.41 ± 1.24)⋅105 3.5299 Minimum atomic state energy for atom H 

-(3.83 ± 1.20)⋅103 -3.1930 Complementary information content (order 2) 
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Table 9. Statistics of best correlations with oscillator strengths as additional descriptors. 

Number of descriptors       R2        R2
cv         F             s 

1   0.7058  0.7027  1098.97 3.53·105 

2   0.7635  0.7582  737.51  3.17·105 

3   0.8317  0.8143  751.13  2.68·105 

4   0.8496  0.8351  642.36  2.54·105 

5   0.8573  0.8431  545.47  2.47·105 
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Fig. 1. 
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Fig 2. 
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Fig. 3. (table 4, eq. 13) 
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Fig. 4. (table 5, eq. 14) 
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Fig. 5. (table 6, eq. 15) 
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Fig. 6. Observed vs predicted chart of 5-parameter equation for the nonpolar subset (Table 7). 
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Fig. 7. Observed vs predicted chart of 7-parameter equation for the ethanol subset (table 8). 
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Fig. 8. 
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Fig. 9. 
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Fig. 10. Correlation chart for the 5-descriptor model with ZINDO oscillator strengths as 

additional descriptors (Eq. 16, Table 9). 
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