
Interpretation of Quantitative Structure -Property and -Activity Relationships

Alan R. Katritzky,* Ruslan Petrukhin, and Douglas Tatham

Department of Chemistry, University of Florida, Gainesville, Florida 32611

Subhash Basak

Natural Resources Research Institute, University of Minnesota, Duluth, 5013 Miller Trunkhwy,
Duluth, Minnesota 55811

Emilio Benfenati

Instituto Mario Negri, Via Eritrea 62, 20157 Milan, Italy

Mati Karelson and Uko Maran

Department of Chemistry, Tartu University, 2 Jakobi Street, Tartu EE51014, Estonia

Received September 27, 2000

The potential utility of data reduction methods (e.g. principal component analysis) for the analysis of matrices
assembled from the related properties of large sets of compounds is discussed by reference to results obtained
from solvent polarity scales, ongoing work on solubilities and sweetness properties, and proposed general
treatments of toxicities and gas chromatographic retention indices.

INTRODUCTION

Quantitative structure-property relationships (QSPRs)
now correlate chemical structure to a wide variety of
physical, chemical, biological (including biomedical, toxi-
cological, ecotoxicological), and technological (glass transi-
tion temperatures of polymers, critical micelle concentrations
of surfactants, rubber vulcanization rates) properties. Suitable
correlations, once established, can be used to predict proper-
ties for compounds as yet unmeasured or even unknown.
Some of the present authors have recently reviewed the
literature on QSPRs for diverse data sets of technologically
important properties;1 their utility is clear, and such applica-
tions will undoubtedly expand rapidly. The present article
suggests that extensions to this methodology can significantly
increase our understanding of how structure determines the
property-behavior phenomena of chemical compounds: it
attempts to bring together in one place various techniques
already utilized by us and others and demonstrate their wide
potential.

It is widely recognized that QSPR equations, whether they
be derived in a purely empirical fashion from an arbitrary
set of molecular descriptors or from a preselected set of
descriptors selected on theoretical grounds for a connection
with a particular property, can give considerable insight into
the manner by which chemical structure controls physical
and biological properties of compounds.

The present article summarizes the way in which data
reduction methods, like principal component analysis (PCA)
of a matrix formed by the assembly of related properties for
a large set of structures, provide insight into how these related
properties depend on each other in a quantitative manner.

We first review the already published results obtained by
using this technique on solvent polarity scales and then
indicate how a similar treatment could clarify the phenom-
enon of solubility in general. Further potential applications
of this methodology are illustrated by reference to chro-
matographic retention times, taste related properties, and
general toxicities.

APPLICABILITY OF PCA TO QSPR TREATMENTS

It is well-established that PCA can be a tool in extracting
uncorrelated and useful information from predictors (inde-
pendent variables) used in quantitative structure-activity
relationship (QSAR) development. For example, Basak et
al.2a,b reported a PCA of 90 topological indices calculated
for a subset of chemicals in the toxic substances control act
(TSCA) inventory consisting of 3692 molecules. The first 4
principle components (PCs) explained 78.3% and the first
10 92.6% of the variance. Such PCs can be used as
independent variables in principle component regressions
(PCR) or as axes for definingn-dimensional spaces to select
analogues or to predict properties of structurally similar
chemicals.2a,3a-h Basak et al.3b,4 also used PCs to select
analogues of chemicals based on their Euclidean distance in
then-dimensional PC space and appliedK-nearest neighbor
(KNN) approach in estimating properties of chemicals from
properties of theirK ()1, 2, ..., 50) selected neighbors as
well as in the discrimination of structurally related isospectral
graphs.5

PCs can classify a diverse set of toxic chemicals with
different modes of action (MOAs) into subsets consisting
of distinct MOA classes.3a Applied to larger databases of
toxicants, this leads to a two-tier QSAR approach for toxicity
by first assigning the proper MOA class and then developing
class-specific QSARs. The United States Environmental
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Protection Agency (USEPA) uses two major methods in their
premanufacture hazard assessment notification (PMN) of
chemicals: (a) class specific QSARs if available and (b)
chemical analogues.6 PCA and PCs derived from computed
molecular descriptors can be used for both purposes.

The data reduction capability of PCA has also provided a
“synthetic and holistic view” of different solvent polarity
scales, insight into the action of structural classes of
sweeteners,7a,b and the solubility of chemicals in diverse
solvents.8 Analogy indicates that such approaches will yield
useful results for the various toxicity scales that have been
developed for the assessment of hazard posed by natural and
anthropogenic chemicals to human and environmental health.

A fundamental goal of QSAR/QSPR studies is to predict
complex physical, chemical, biological, and technological
properties of chemicals from simpler “descriptors”, preferably
those calculated solely from molecular structure, excluding
experimental data.9 To this end, numerous experimental and
computed descriptors have been developed for QSAR/QSPR
studies.10 Any descriptor, whether experimental or calculated,
associates a real number with a chemical and then orders
the set of chemicals according to the numerical value of the
specific property. Each descriptor or property provides a scale
for a particular set of chemicals. Thus an experimentally
determined solvent polarity scale orders a set of solvents
according to the magnitude of the solvent polarity as defined
by the scale. Similarly, the magnitude of the molecular
complexity descriptor (e.g., the first-order information
content, IC1) maps a set of chemicals into a corresponding
set of real numbers, and orders them into a scale.11a,bIf such
a scale (independent variable), experimental or calculated,
is linearly or nonlinearly related to the magnitude (scale) of
a particular physical, chemical, biological, or technological
property (dependent variable) of interest, this provides a
successful QSAR/QSPR model. Multiple linear regressions
have been very popular in the formulation of QSARs/QSPRs.

The partial least squares (PLS) method is particularly
suited for the extraction of a few highly significant formal
correlational factors from large homogeneous sets of descrip-
tors such as molecular field grid data (cf. comparative
molecular field analysis, CoMFA).12aHowever, this approach
is often less appropriate in cases of large diverse descriptor
sets, as its use can result in the selection of too many formal
factors.12b Therefore, in this paper we consider an alternative
approach that combines the PCA and multilinear regression
analysis. The new approach is outlined on the basis of the
previous work by our groups.

FURTHER MODEL BUILDING METHODS

For more complicated situations, several statistical methods
can be used for flexible nonlinear modeling, including the
following: polynomial regression; tree-based models; Baye-
sian methods.

For instance, Trinajstic and co-workers used nonlinear
multivariate regression to predict biological and pharmaco-
logical properties.13aMethods of machine learning have also
been used in the development of QSAR/QSPR models. In
the 1990s, regression methods based on neural networks
(NNs) offered new possibilities to QSARs, accounting for
nonlinear structure-activity relationships and dealing with
nonlinear dependencies.13b Repeatedly, NNs proved to be

equal or superior to multivariate regression.13a,b,14a,bArtificial
intelligence offers advantages in dealing with numerical
continuous values and also with categories and rules.15

Machine learning research seeks to develop algorithms that
learn predictive relationships from data by data mining and
knowledge discovery techniques. Fuzzy logic can be used
to keep into account the uncertainty of the property of
interest, e.g., the magnitude of a toxicological value.

Numerous QSAR/QSPR models apply both statistical and
neural net methods, with a single or a small set of
independent variables, to small and structurally related
compound sets. Complex properties such as solvent polarity,
sweetness, and the toxicity of structurally diverse chemicals
(e.g. those in the TSCA inventory) call for broader integrated
approaches, rather than such piecemeal methods. Techniques
such as PCA provide holistic approaches for combining many
independent variable (descriptor) scales for deriving QSAR/
QSPR models for complex properties and larger sets of
compounds.

The data ofp descriptors forn chemicals form ann × p
matrix X. Each chemical is now a point in thep-dimensional
space, RP. Since many descriptors, whether experimental or
calculated, are significantly intercorrelated, the points in RP

will in fact define a subspace of lower dimension thanp,
and, as discussed above, PCA can provide PCs which
represent reduced data and efficiently combine diverse
predictor variables. The PCs can then be used in the
prediction of properties, quantification of structural similarity/
dissimilarity of chemicals, and the clustering of large and
diverse combinatorial libraries of chemicals.16

PCs may find applications in the clustering and classifica-
tion techniques for complex properties such as toxicity. While
classification methods may appear crude, compared to
multilinear analysis and NN, given the huge variability of
the toxic effects, they will be suitable for the preliminary
treatment of large sets of data.17

SOLVENT POLARITY SCALES8,18

Solvent polarity is widely recognized to be of great
importance in many fundamental and applied areas of
research. However, the precise definition of solvent polarity
has proved difficult. More than a hundred quantitative solvent
polarity scales have been proposed on the basis of diverse
properties, including reaction rates, solvatochromic effects,
and entropies. In recent joint work of two of our laboratories,
a matrix was formed from 40 of the most important scales
and 40 of the most important solvents. However, there were
many gaps in this database. A QSPR was established for
each of the 40 scales,18 and this was then used to fill in all
the gaps in the matrix. The principal component analysis of
this matrix8 showed that the first three principal components
accounted for about 75% of the total variance. These
components described 22 of the scales very well (greater or
equal to 90% of variance), another 14 were well or fairly
well described (70-89% of the variance), and 4 were rather
poorly described, the 54-65% of variance.

A three-dimensional plot using the loadings of the first
three PCs as axes gave very useful information on the scales;
see Figure 1. In particular, most scales fell into five groups
as follows: (i) expression of dielectric constant; (ii) charge-
transfer effects on electronic spectra; (iii) other UV spectral
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effects; (iv) expression of solvent basicity; (v) expression
of solvent refractive index.

Similarly, a three-dimensional plot of the scores of the
first three PCs (Figure 2) gave information on the solvents.
In particular, the hydroxylic solvents appeared in one group,
the dipolar-aprotic solvents in another, and polar solvents
in yet another group (well-separated from the nonpolar
solvents). Only formamide remained as a single group.

In this way considerable information and rationalization
was obtained for both solvents and solvent polarity scales.

General Treatment of Solubility. Consideration of the
solubilities of solids or liquids in a liquid solvent is
complicated by the need to consider intermolecular interac-
tions in the bulk solute in addition to those in the bulk solvent
and between the solute and the solvent. Thus, it is easier to
treat the solubilities of vapors and gases, i.e., gas-liquid
partition coefficients. Moreover, such gas-liquid partition
coefficients are extremely important from an environmental
point of view, especially when the liquid is water. Therefore
it is of great utility to have the structure-based chemical
information on gas solubilities generalized.

Water-gas phase partition coefficients of diverse organic
compounds can be adequately described using descriptors
based solely on the chemical structures of the organic
molecules: a web site is available (http://clogp.pomona.edu/
medchem/chem/qsar-db). The partitioning of two sets of
organic gases and vapors between water and air (Lw) has
been studied using the CODESSA program.19 For a set of
95 alkanes, cycloalkanes, alkylarenes, and alkynes, excellent

predictions were obtained with a two-parameter correlation
equation (R2 ) 0.977, R2

cV ) 0.975) that adequately
represented the effective dispersion and cavity formation
effects for the solvation of nonpolar solutes in water. A set
of 406 structurally diverse organic compounds (including
structures containing N, O, S, and halogen atoms) was
successfully correlated by a five-parameter equation (R2 )
0.941,R2

cV ) 0.939),19 which accounts for the dispersion
energy of polar solutes in solution, the electrostatic part of
the solute-solvent interaction, and hydrogen-bonding inter-
actions in liquids.

We recently obtained similar equations for the solubilities
of organic molecules in methanol and ethanol.20 The solubili-
ties of 87 gases and vapors in methanol resulted in a four-
parameter equation (R2 ) 0.945, R2

cV ) 0.938) that ad-
equately represents the solute-solvent interactions described
by the polarizability, dipole moment, hydrogen bonding, and
lipophilicity. The solubilities in ethanol of 61 gases and
vapors also yielded a four-parameter equation (R2 ) 0.969,
R2

cV ) 0.964), where the solute-solvent intercorrelations,
similar to those of methanol, include electrostatic and
hydrogen-bonding interactions.

We plan to extend this work to a variety of other solvents,
including polar aprotic solvents such as dimethylformamide,
dimethyl sulfoxide, nitrobenzene; polar solvents such as
chloroform and ethyl acetate; and nonpolar solvents such as
hexane and benzene. This will provide a matrix between the
solvents and solutes; vacancies in the matrix will be
calculated using the correlations already obtained. A principal

Figure 1. Loadings of the second PCA component plotted versus the loadings of the first component with the third component loading and
scale classification given as labels to the data points. Reprinted with permission from ref 8. Copyright 1999 American Chemical Society.
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component analysis on this matrix, similar to that described
above for polarity scales, should provide a set of loadings
which will characterize the solvents and a set of scores that
will characterize the solutes. We believe that examination
of the patterns for the loadings and the scores will present
useful information and insight into the general phenomenon
of solubility.

Gas Chromatographic Retention Times.It would be
advantageous to systematize gas chromatographic (GC)
retention times based on the chemical structure. We recently
reviewed the enormous amount of data on the QSPR and
related analyses of GC retention times.1 A systematic
treatment should illuminate the structural dependencies
between the eluted compound and various stationary phases
in GC.

Several authors have estimated retention indices using
topological descriptors.21a-e Charged partial surface area
(CPSA) descriptors22 have also been successfully combined
with topological and geometrical descriptors to predict
retention indices of substituted pyrazines,23 polycyclic aro-
matic compounds,24 stimulants and narcotics,25 and anabolic
steroids.26 The CPSA descriptors encode information about
charge distribution and surface areas, which relates to
interactions between the eluted compounds and molecules
in the stationary phase.

As the polarity of the stationary phase changes, the
influence of the charge distribution of the eluted molecules
changes, and different descriptors become important. There-
fore, each phase has to be modeled separately. Diverse
classes of descriptors extend the pool of information and

consequently should result in a better description of the
property. Indeed, topological descriptors can be successfully
combined with quantum-chemical descriptors to predict GC
retention indices.27a-c Quantum chemical descriptors also
encode information about the charge distribution and polarity
of molecules and were capable of handling specific effects
of the stationary phase. Even alone, quantum chemical
descriptors can be useful for this type of study, as indicated
by the theoretical linear solvation energy relationship (TLS-
ER) established for GC retention indices.28

Our QSPR analysis of GC retention times utilized a mixed
set of topological and quantum-chemical descriptors to model
152 structures, including a wide cross-section of classes of
organic compounds.27b A forward procedure for the selection
of molecular descriptors in the multilinear regression analysis
in the CODESSA program gave a six-parameter model (R2

) 0.959,R2
cV ) 0.955), with polarizability being the most

important descriptor in the model. These results were recently
reevaluated using improved procedures in CODESSA and
new methods for the efficient selection of variables in the
multilinear regression analysis.27c In more recent work,29 we
analyzed a set of 178 methyl-branched hydrocarbons to give
a four-parameter model (R2 ) 0.9585, R2

cV ) 0.9543)
combining topological and quantum chemical descriptors.

Considering the amount of information encoded into
descriptors, insight into the general phenomenon of gas-
solid absorption could be obtained by combining QSPRs and
subsequent PCAs of a matrix of retention times of a diverse
set of compounds using a range of solid phases in GC. It
would of course be necessary to make all the GC measure-

Figure 2. Plot of the scores of the second component versus the scores of the first component with the third component loading and scale
classification given as labels to the data points. Reprinted with permission from ref 8. Copyright 1999 American Chemical Society.
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ments under the same experimental conditions such as the
length of the column, the temperature of the column, the
nature of the carrier gas, and the speed of the carrier gas.

Sensory Properties. In unpublished work,7b we have
provided QSPRs for the sweetness property, defined as the
dimensionless ratio of the concentration of the alternative
sweetener to the concentration of sucrose, which has an
equally sweet taste. For a comprehensively referenced set
of 348 natural and artificial sweeteners, the treatment of data
using the linear and nonlinear regression methods of the
CODESSA software package resulted in a global three-
parameter correlation with R2 ) 0.71. Significantly more
reliable models were developed for various subclasses of
compounds (peptides, aldoximes, acesulfamates and sulfa-
mates, guanidines, ureas and thioureas, and various natural
sweeteners).

Following the general idea now expounded, it would be
of substantial interest to extend this investigation by applying
the QSPR treatment to other sensory properties of com-
pounds. It is known that taste reception is localized in four
regions of the tongue, corresponding to the sensations of
sweetness, saltiness, sourness, and bitterness, each related
to different receptors.30 Nevertheless, according to the
approach described above for other properties, all these
gustatory properties should be treatable simultaneously using
a combination of QSPR with PCA. Furthermore, it has been
observed that the gustatory properties of certain compounds
can be interrelated with the corresponding olfactory proper-
ties.7a,31a,bConsequently, a combined QSPR/PCA treatment
may also be feasible for the sets of data on both sensory
properties. Extensive data on olfactory properties have been
collected and systematized using the QSAR approach.32

General Treatment of Toxicities. A general treatment
could determine underlying relationships between different
measures of toxicity. Although toxicity is far more complex
than the topics previously discussed in this paper, we believe
that the method could make a significant contribution to the
analysis, classification, and understanding of toxicity.

A comparison with the treatment of solvent polarity scales
mentioned above is illuminating. Between 100 and 200
solvent polarity scales have been formulated, and perhaps
400 or 500 solvents were examined. The numbers for toxicity
are far larger: many different measures of toxicity have been
used depending on species, concentration, mode of applica-
tion, and duration. The number of compounds, on which at
least one measure of toxicity has been obtained, ranges up
to six figures. Despite this complexity, the method could
investigate (i) general interrelationships between various
types of toxicity and (ii) interrelationships between structures
in determining toxicity.

The enormous amount of experimental data available
makes this attempt challenging. Moreover, considering the
data as a matrix of compounds against toxicities, the matrix
is very fragmentary: there are far more missing than
available data points. Work on multidimensionality problems
so far has centered on much simpler topics. It is very difficult
to compare the performances of the multitude of different
models reported for the prediction of toxicity because they
refer to a multitude of situations: different toxicological
endpoints, chemical descriptors, mathematical algorithms,
and data sets. Some toxicological endpoints can be explained
more easily than others. For instance, narcosis in fish is

related to nonspecific mechanisms, while carcinogenesis is
the result of several complex phenomena involving many
biological and chemical steps. Furthermore, it is easier to
model the toxicity of a congeneric set of compounds, for
instance, a homologous series, while it is more difficult to
extrapolate the behavior of chemicals of vastly diverse
chemical classes.

In addition, there is the problem of the variability of the
biological data arising from the chemical purity of the
compound under study, the variability of the protocol, and
biological variability. We may be able to avoid much of the
variability resulting from the chemical purity and protocol,
but the reproducibility of biological tests is much lower than
that for other properties, such as gas chromatographic
retention times. Such variability is particularly relevant when
dealing with reduced sets of data.

QSAR models for various toxicities have been collected.33

Hermens co-coordinated a project in which QSAR models
for aquatic toxicity were reviewed:34 log P was the parameter
most frequently related to toxicity, but it is insufficient to
explain all the toxicological properties.35a,b Many other
descriptors can be used in order to predict toxicity better;
for example, Basak et al. compared topological, geometrical,
and quantum-chemical parameters in predicting mutagenic-
ity,36 aquatic toxicity,36 and dermal penetration37 of chemi-
cals.38 Of course, chemical descriptors can be combined and
selected, to take advantage of the most useful parameters;
this has been done, for instance, in a study of genotoxicity
using multilinear regression.39

A huge number of parameters describing a compound can
be measured or computed, but how to deal with this high-
dimensional information is a problem. In many cases noa
priori knowledge on the role of parameters in determining
a property is available. In this situation, a selection of the
variables is needed to reduce the complexity of the descrip-
tion, using for instance PCAs (which imply linearity of the
model) or genetic algorithms (which may also keep into
account nonlinearity).

The complexity of toxicity stems from the following: the
toxicological aspect, the chemical information, the math-
ematical approach, the dimension, and the diversity of the
set of chemicals. To investigate all of these points, in an
ongoing project a data set of compounds presenting six
different toxicological endpoints has been compiled. About
200 chemical descriptors were calculated for these com-
pounds, and different computational models were evaluated.
Preliminary results40a,b indicated the feasibility of the ap-
proach; however, a wider data set is required, both for the
number of compounds and for the number of toxicological
endpoints.

Quo Vadis? We are suggesting a transition from the
familiar one-dimensional QSAR/QSPR treatments, where the
variation of a single property with structure is studied, to a
general multidimensional treatment. This implies the simul-
taneous study of many descriptors or the study of the
utilization of orthogonal variables extracted from many
descriptors in the development of QSAR/QSPR models. Such
models should be based solely on parameters that can be
calculated directly from the molecular structure using
computer algorithms without any input of experimental data.
This is essential because even the simplest experimental
properties are not available for many known environmental
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pollutants and most chemicals of real or virtual combinatorial
libraries. This more general approach is also advantageous
for real applications: for example, it is much more useful
to have a model that takes into account the numerous
toxicological endpoints related to an aquatic ecosystem than
a model which accounts only for a single endpoint such as
lethality in Daphnia. Thus, the approach should provide
additional insight into QSAR/QSPR by the application of
data-reduction methods such as PCA to property/structure
matrices.
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