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A total of 397 natural and artificial comprehensively referenced

sweeteners were classified by their structures into nine sets. The

sweetness potencies were correlated with quantum chemical and

other molecular descriptors using the heuristic and the best mul-

ti-linear regression methods of the CODESSA software package.

QSPR models (two-parameter unless otherwise indicated) emerged

for each subclass of sweeteners with R2 values of 0.835 for 47

aldoximes, 0.959 for 8 acesulfamates, 0.919 for 9 sulfamates, 0.941

for 10 �-arylsulfonylalkanoic acids, 0.715 for 27 guanidines (0.802

in a three-parameter correlation), 0.769 for 30 ureas/thioureas

(0.888 in a three-parameter correlation), 0.905 for 20 natural

sweeteners, 0.957 for 7 miscellaneous sweeteners (one-parameter

correlation), 0.688 for 87 peptides (five-parameter correlation). A

significant global five-parameter QSPR theoretical model with R2

of 0.686 for the entire set of sweeteners is presented and discussed

with reference to the possible existence of single or multiple sweet-

ness receptors.
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INTRODUCTION

The development of low-calorie sweeteners for sugar substitution is me-

dically very important, and potentially could solve serious problems of mod-

ern human nutrition and health. For instance, they can have a beneficial ef-

fect in the management of diabetes and obesity which, in turn, can control a

number of other diseases. The important requirements for a sweetener for

commercial utility are: (i) high sweetness relative to sucrose which will

bring down the cost as well as the caloric value, (ii) early onset of the sweet

taste and absence of lingering off-taste, (iii) stability under the conditions of

use, (iv) lack of toxicity, and (v) low cost of production. Consequently, the

search for sweeteners with an ideal blend of the above features has been

continuing since 1898 and many different classes of sweeteners have emer-

ged.

In previous attempts to unravel the factors underlying the sweetness pro-

perty, many QSPR studies were performed for different sub-sets of sweeten-

ers: dihydrochalcones,1 perillartines,2 sulfamates,3 five membered rings4

and diverse compounds.5 Although the above QSPR studies can describe in-

dividual classes of sweeteners well, finding successful structure-activity cor-

relations encompassing all classes of sweeteners has remained elusive per-

haps unsurprisingly in view of the involvement of multiple receptors.6 How-

ever, significant progress has recently been achieved with the development

of the multi-point docking concept7 and the latest 15-point system7a signifi-

cantly assists the understanding for most known classes of sweeteners.

Much of the earlier work has been clearly summarized by van der Heijden:6c

this author developed geometrical explanations for the sweet taste involving

AH…B moieties in the various classes of the sweet substances.

Since 1991, linear multivariable QSPR methodology has been developed

by our group within the CODESSA software package.8a The CODESSA pro-

gram is undergoing continuous development and the latest available version

has been applied to the sweetness task. The main objective of the present

work is to evolve general QSPR models for predicting the degree of sweet-

ness for the global set of sweeteners as well as the different subclasses us-

ing the CODESSA software package.8a CODESSA has previously been ap-

plied to many QSPR relationships.8c–m

METHODOLOGY

The Sweeteners’ Database

A database of sweeteners was created from literature sources.1,3,4,6b,7a,10 The gen-

eral set comprises many subclasses including: aldoximes (perillartines), sulfamates,
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acesulfamates, (�-arylsulphonyl)cycloalkanoic acids, natural sweeteners including

sugars, peptides, guanidines and other substances.

The types of sweeteners in the database and its current extent are depicted in

Table I. Currently, 397 structures have been entered into the database; quantitative

data for the onset sweetness property were recorded for 351 structures; and for the

remaining structures, qualitative data were included as the only information avail-

able. In this study, the qualitative assessments for sweetness, bitterness, sourness,

and saltiness, are expressed by a range in which 0 means »non-sweet« (for sweet-

ness), 5 means »very sweet« and values between 1 and 4 describe intermediate levels

of sweetness, all on a semi-quantitative scale. If a description that a structure is

sweet (or bitter, etc.) alone is available, a default value of 3 is used. For some struc-

tures having both sweet and bitter tastes, additional information about the sweet-

bitter blend is given as a ratio in a »comment« field. The current content of the data-

base consisting of the structures, sweetness potencies, literature and other pertinent

information is included as Table II in the supplementary material to this article.

Derivation of Descriptors and Regression Analyses

The sweetener database was created using ISIS technology11 of MDL Informa-

tion Systems, Inc., and transferred to the CODESSA program. All structures were

prepared for MOPAC12 optimization by the HYPERCHEM program.

The 3D geometry for all compounds have been calculated utilizing (i) the

MOLGEO program,13 (ii) the MM+ molecular mechanics method using HyperChem
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TABLE I

Content of the sweeteners’ database

Class of sweeteners Number of structures

All
Positive quantita-

tive sweetness

Aldoximes (perillartines) 48 47

Sulfamates 111 9

�-Arylsulphonylcycloalkanoic acids 10 10

Acesulfamates 9 8

Naturally occurring substances 25 20

Peptides 88 87

Guanidines 28 27

Urea and thiourea 39 30

Others 55 7

Compounds belonging to two sub-sets

(11) counted twice in the above rows
–16 –7

Total 397 238



V5.1,14 (iii) the AM1 parameterizations15 of MNDO semi-empirical method using the

MOPAC V6 software package.12

The CODESSA software subsequently produced more than 500 constitutional,

topological, geometrical, electrostatic, quantum chemical and thermodynamical mo-

lecular descriptors8b for each compound and performed the statistical analyses in the

descriptor space.

RESULTS AND DISCUSSION

Our aim has been to arrive initially at comprehensive theoretical models

for the relative sweetness (RS) of all the sub-sets, with sweeteners having

positive quantitative values (Table I), and then to explore the existence of a

global model encompassing all known sweeteners. Relative sweetness is de-

fined as the ratio of the concentration of the alternative sweetener to the

concentration of sucrose which has an equally sweet taste (dimensionless).

The whole set of sweeteners has been classified into nine sub-sets using

substructure keys and on the basis of the source of the sweeteners. All the

descriptors required for the QSPR study were calculated using the AM115

semi-empirical method as realized in the MOPAC12 computer program. The

natural logarithm of the relative sweetness (ln RS) has been used for the

QSPR correlations of the present investigation. Both the heuristic (HM)8a

and the best multi-linear regression methods (BMLR)8a have been employed

to arrive at the optimum correlations. These methods employ different ap-

proaches in the discrete local optimization of the correlation coefficient in

the descriptor permutation space. As they are local optimization methods,

there is no guarantee that the global optimum on the discrete descriptor

space will be found by them. Although both methods use heuristics for elim-

inating the descriptors with low probability to be involved in the final multi-

parameter correlation, the approaches to this elimination are completely

different.
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TABLE II

The database content

Quantitative Qualitative

Sweet-

ness

Bitter-

ness

Sour-

ness

Salti-

ness

Sweet-

ness

Bitter-

ness

Sour-

ness

Salti-

ness

351 9 9 9 397 80 33 32



The best multilinear regression (BMLR) method8a searches for the multi-

parameter regression with the maximum predicting ability using the follow-

ing strategy:

Step 1. Setting up initial values: (i) the upper limit of the square of the

linear correlation coefficient Rmin
2, for two descriptor scales to be considered

orthogonal (default value Rmin
2 = 0.1); (ii) the lower limit of the square of

the linear correlation coefficient Rnc
2, for two descriptor scales to be consid-

ered non-collinear (default value Rnc
2 = 0.65); (iii) the maximum number of

best correlations to be considered in the search of the best correlations with

one descriptor scale added (default value Nc = 400); (iv) the probability level

for the Fisher criterion FSel (default value 0.95).

Step 2. All orthogonal pairs of descriptors i and j (with Rij
2 < Rmin

2) are

found in a given data set.

Step 3. The property analyzed is treated by using the two-parameter re-

gressions with the pairs of descriptors, obtained in Step 2. The Nc pairs with

highest regression correlation coefficients are chosen for performing the

higher-order regression treatments.

Step 4. For each descriptor set, obtained in the previous step, a non-col-

linear descriptor scale, k (with Rik
2 < Rnc

2 and Rkj
2 < Rnc

2), is added, and the

respective (n+1)–parameter regression treatment is performed. If the Fisher

criterion at a 95% probability level, F, is smaller than that for the best n-pa-

rameter correlation from previous step, the latter is chosen as the final re-

sult and the program proceeds to the output section (Step 5). Otherwise, the

Nc descriptor sets with highest regression correlation coefficients are chosen

for this step repeated with incremented value of n.

Step 5. The final result, with the maximum value of the Fisher criterion

and with the highest cross-validated correlation coefficient is chosen for use

in the subsequent prediction part of the program. The results for the best

correlation of each rank are saved.

The heuristic method (HM)8a for descriptor selection, by contrast, pro-

ceeds with a pre-selection of descriptors by eliminating sequentially descrip-

tors which do not match any of the following criteria: (i) Fisher F-criterion

greater than one unit; (ii) R2 value less than a value defined at the start (by

default 0.01); (iii) Student’s t-criterion less than that defined (by default

0.1); (iv) duplicate descriptors having a higher squared intercorrelation coef-

ficient than a predetermined level (usually 0.8), retaining the descriptor

with higher R2 with reference to the property.

The remaining descriptors are then listed in decreasing order of the cor-

relation coefficients when used in global search for 2-parameter correla-

tions. Each significant 2-parameter correlation by F-criterion is recursively
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expanded to an n-parameter correlation till the normalized F-criterion re-

mains greater than the startup value. The top N correlations by R2 as well

as F-criterion are saved.

The HM usually produces correlations 2–5 times faster than BMLR,

with quality comparable to that obtained with the latter. The results of

QSPR studies of the various different classes of sweeteners are discussed in

turn below and finally the whole set is considered globally.

Aldoximes

This sub-set consists of 47 aldoximes each containing the group (=N–OH)

(Table III). QSPR treatment by CODESSA afforded significant 2- and 3-pa-

rameter correlations (Eqs. (1) and (2) respectively).

ln RS = –(59.8 � 4.8)#OR + (0.224 � 0.033)SAC + (4.18 � 0.70) (1)

R2 = 0.835 F = 112 s = 0.099 n = 47

(In this and following equations s s n� 2 / )

ln RS = –(51.9 � 4.9)#OR – (222 � 41)RIe
avg,C + (96.2 � 14.4)PSAC (2)

R2 = 0.857 F = 86.1 s = 0.094 n = 47

In these equations, #OR refers to the relative number of oxygen atoms in

the sweetener molecule; SA2C to the solvent accessible surface area8b of the

carbon atoms; RIe
avg,C to the average electrophilic reactivity index8b for a

carbon atom; PSA2C to the positively charged solvent accessible surface

area8b of the carbon atoms.

The negative sign of the partition coefficient corresponding to the #OR

descriptor, viz. the number of oxygens, may indicate competitive interferen-

ce of oxygen functionalities blocking the oxime groups in the docking pro-

cess. The surface area related descriptors, SAC and PSAC, have positive

signs for their coefficients showing that the larger the area the more the in-

teraction. The descriptor, RIe
avg,C, defined as sum of squares of the atom or-

bital contributions in LUMO, involved in the three-parameter equation,

may relate to the interactions between the sweetener and the receptor.

Pertinently, no other QSPR study on the sweetness of aldoximes is avail-

able for direct comparison with the correlations obtained in the present in-

vestigation. Previous work was limited to the development2a discriminant

functions based on log P and the Randi} indexes8b (1�c and 1�j) for the

sweetness of aldoximes and reported two- and three-parameter relationship

(Eqs. (3) and (4), respectively) as the best linear discriminant functions. Po-
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sitive values of g in Eqs. (3) and (4) indicate a sweet taste while a negative

value relates to a bitter taste.

g2(X) = 0.696 log P – 0.718 1�c – 0.220 � 10–5 (3)

g3(X) = 0.595 log P – 0.773 1�c – 0.220 1�j – 0.882 � 10–5 (4)

Kier10a defined another discriminant function by Eq. (5) with a critical

value of –3.27 for y.

y = 1.21 1� – 3.88 4�p (5)

The y values greater than the critical value correspond to the sweet tas-

te and those less than it with bitter.
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TABLE III

Results of correlations for aldoximes (n = 47)

#P R
2

F s B �B t Name of descriptor

1 0.664 88.7 0.140

0 8.27 0.50 16.6574 Intercept

1 –63.6 6.8 –9.4204
Relative number

of O atoms

2 0.835 112 0.099

0 4.18 0.70 5.9891 Intercept

1 –59.8 4.8 –12.4166
Relative number

of O atoms

2 0.224 0.033 6.7788 SA-2 of C atoms

3 0.857 86.1 0.094

0 5.121 0.815 6.2805 Intercept

1 –51.9 4.9 –10.7007
Relative number

of O atoms

2 –222 41 –5.3704

Average electroph.

react. index for a

C atom

3 96.2 14.4 6.6578 PSA-2 of C atoms

4 0.871 70.9 0.090

0 –13.7 8.9 –1.5338 Intercept

1 –46.1 5.4 –8.5431
Relative number

of O atoms

2 –217 40.0 5.4523

Average electroph.

react. index for a

C atom

3 75.9 16.9 4.4962 PSA-2 of C atoms

4 9.27 4.38 2.1174
Maximum bonding

contribution of a MO



Acesulfamates and Sulfamates

For the acesulfamate sub-set of 8 sweeteners, the best one-parameter

correlation (Eq. (6)) is with CImax,C–H, the maximum coulombic interaction

for the carbon-hydrogen bond (Table IV), a descriptor which relates to the

electrostatic and van der Waals interactions and is correlated with the po-

larity of the hydrogen-carbon bond which is the closest to oxygen atom in

the cycle, and with total electron density on this hydrogen atom, correspon-

dently. The 2-parameter correlation in Table IV also includes descriptors

which could influence the free energy of the docking of the sweetener.

ln RS = –(4.53 � 0.38)CImax,C–H + (21.7 � 1.5) (6)

R2 = 0.959 F = 139 s = 0.078 n = 8

For the sulfamate class of 9 sweeteners, linear regression analysis (Ta-

ble V) afforded the two-parameter correlation (7).

ln RS = –(2.49 � 0.392)SAO + (30.8 � 7.71)C'MO + (26.7 � 2.03) (7)

R2 = 0.919 F = 34.0 s = 0.058 n = 9

The incorporation of the solvent accessible surface area for a oxygen

atom (SAO) and the maximum antibonding contribution into molecular or-

bital (C'MO) in the above equations can be understood in terms of their possi-

ble influence on the interactions associated with the docking complex forma-

tion.
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TABLE IV

Results of correlations for acesulfamates (n = 8)

#P R
2

F s B �B t Name of descriptor

1 0.959 139 0.078

0 21.7 1.5 14.7937 Intercept

1 –4.53 0.38 –11.7838

Max coulombic

interaction for a

C–H bond

2 0.996 677 0.026

0 628 19.8 31.7953 Intercept

1 –339 11 –31.6183
Max bond order for

an O atom

2 6509 342 19.0291

Average nucleoph.

react. index for a

N atom



In earlier work, a one-parameter relationship (8) between the relative

sweetness (RS) of sulfamates and the third order Randi} index8b (3�m) was

reported.4b

RS = (16.06 � 4.21) 3�m – (10.19 � 7.31) (8)

R2 = 0.5929 s = 8.41 n = 12

Previously, two discriminant functions were developed from geometrical

parameters of the structures and the first order Randi} index.3b A non-lin-

ear correlation for sweetness was based on four STERIMOL parameters:3a

D = �0.25�(MR – 24.4/8.77)2 + (L – 5.68/1.46)2 +

(B1 – 1.69/0.395)2 + (B0 – 3.89/1.15)2�	0.5 (9)

F
D

�
2

2RSD
, F < F(4.52)� 0.05

In Eq. (9) L, B1 and B0 are STERIMOL parameters while RSD is the re-

sidual standard deviation. It is not possible to compare the results of a dis-

criminant analysis with those of multi-linear regression analysis as these

two approaches differ in their basic concepts.

A one-parameter correlation between the apparent molar volume (AMV)

(which, in turn, correlates well with sweetness) and various types of volume

functions calculated by the GEPOL program for sulfamates has been re-

ported by Spillane et al.5a Another study has reported a correlation between

AMV and molecular surface volume (MSV),5b but provides no direct relation-

ship between relative sweetness and either the AMV or MSV.
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TABLE V

Results of correlations for sulfamates (n = 9)

#P R
2

F s B �B t Name of descriptor

1 0.785 25.6 0.088

0 253 51 –4.9999 Intercept

1 272 54 5.0597
Minimum valency

of a H atom

2 0.919 34.0 0.058

0 26.7 2.03 1.3119 Intercept

1 2.49 0.392 6.3470 SA-2 of O atoms

2 30.8 7.71 4.0000
Max antibonding

contribution of a MO



�-Arylsulfonylalkanoic Acids

For a series of ten �-arylsulfonylalkanoic acids, the best two-parameter

correlation is Eq. (10) (Table VI).

ln RS = –(30400 � 4100)RIe
avg,C – (2890 � 450)RI1e

min,S + (5.01 � 0.11) (10)

R2 = 0.941 F = 55.3 s = 0.096 n = 10

Eq. (10) includes the minimum electrophilic reactivity index for a carbon

atom (RIe
avg,C) and the minimum 1-electron reaction index for a sulphur

atom (RI1e
min,S), defined as

RI e

LUMO HOMO

AA
HOMO LUMO

1 � 

��
�� c ci j

ji

/ ( )� � ,

where the summations are performed over all atomic orbitals i, j at the gi-

ven atom, ciHOMO
and c j LUMO

denote the i-th and j-th AO coefficients on the

highest occupied molecular orbital (HOMO) and the lowest unoccupied mo-

lecular orbital, respectively, and �LUMO and �HOMO are the energies of these

orbitals, which probably reflect involvement of the sulphonyl and carboxyl

functions with the receptor site in the sweetness recognition.

A previous literature study10m correlated the sweetness of these com-

pounds employing a neural network and concluded that the syn-clinical con-

formation is probably actively involved in the display of the sweetness prop-

erty.
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TABLE VI

Results of correlations for �-arylsulfonylalkanoic acids (n = 10)

#P R
2

F s B �B t Name of descriptor

1 0.762 25.6 0.178

0 7.93 0.64 12.2946 Intercept

1 –1075 2127 –5.0579

Principal moment

of inertia of C/# of

atoms

2 0.941 55.3 0.096

0 5.01 0.11 45.5594 Intercept

1 –30935 4123 –7.5037

Min. electroph.

react. index for a

C atom

2 –2889 452 –6.3976

Min 1-electron

react. index for a

S atom



Guanidines

The results of correlations for this sub-set of 27 guanidines (–N=C(NH)–

NH–) are listed in Table VII. The three-parameter correlation (11) is more

significant than the two-parameter correlation results according to the

Fisher criteria. In Eq. (11), the moment of inertia I, the solvent-accessible

surface area of H-bonding acceptor atoms, selected by threshold charge

(HACA), and the minimum electron-electron repulsion for a C–C bond

(ERmin,CC), defined as ERAB

A

�
��


��� P P�� ��

������

�� ��
�� �

, where A, B are atoms,

Pmn and Pls are the density matrix elements and �� �� are the electron re-

pulsion integrals on the atomic basis ������, are involved.

ln RS = –(733 � 192)I – (0.181 � 0.03)HACA –

(0.682 � 0.148)ERmin,CC + (91.5 � 16.5) (11)

R2 = 0.802 F = 31.1 s = 0.215 n = 27

While the moment of inertia is related to the shape of the molecule, the

other two factors probably influence the probability and enthalpy of the

sweetener docking. The electron-electron repulsion energy describes the

electron repulsion driven processes in the molecule and may be related to

the conformational (rotational, inversional) changes or atomic reactivity in

the molecule. No previous correlation has been located in the literature for

the relative sweetness of guanidine sweeteners.
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TABLE VII

Results of correlations for guanidines (n = 27)

#P R
2

F s B �B t Name of descriptor

1 0.513 26.4 0.323

0 3.01 1.41 2.1282 Intercept

1 1.28 0.25 5.1330
Kier & Hall index

(order 2)

2 0.715 30.2 0.252

0 95.3 18.2 5.2511 Intercept

1 –671 102 –6.6070 RT:1HACA2/TMSA

2 –0.733 0.161 –4.5507
Min e-e repulsion

for a C–C bond

3 0.802 31.1 0.215

0 91.5 16.5 5.5412 Intercept

1 –733 192 –3.8155 Moment of inertia C

2 –0.181 0.030 –6.0028
HACA-1 �Semi-MO

PC	

3 –0.682 0.148 –4.6014
Min e-e repulsion

for a C–C bond



In several correlations reported in the present paper, the quantum-che-

mical energy descriptors have appeared as significant contributors. In each

series of compounds, they are related to a specific bond or bond type, which

could be expected to participate in the biological activity process. Proceeding

from the structure of the Hartree-Fock Hamiltonian, the one- and two-atom

energies can be further partitioned into coulombic and exchange (or reso-

nance) terms. This corresponds to the fact that some processes (or interac-

tions) are driven by the changes in the coulombic potential whereas others

are directed by changes in the exchange potential. Alternatively, the proces-

ses may be controlled by a change in either the electronic or the nuclear

energy9. Therefore, such partitioning of the quantum-chemical total energy

for the series of molecules could potentially give additional valuable infor-

mation about the physical character of processes involved in the substrate-

receptor interactions. In Eq. (11), for instance, the significant contribution

of the minimum electron-electron repulsion for a C-C bond (ERmin,CC) sug-

gests the involvement of this bond during the interaction of guanidines with

the sweetness receptor(s), presumably controlled by electronic repulsion

energy.

Ureas and Thioureas

Correlations of the relative sweetness potency of a sub-set of sweeteners

comprising 30 ureas (-NH-CO-NH-) and thioureas (-NH-CS-NH-) are listed

in Table VIII. The best three-parameter correlation (Eq. (12)) is statistically

significant (Table VIII) in view of the 30 data points available in this sub-

set.

ln RS = (3.34 � 0.26)Strans – (5671 � 610)ZPCmax,H –

(183 � 35)BOavg,H + (585 � 75) (12)

R2 = 0.888 F = 68.4 s = 0.106 n = 30

In Eq. (12), the descriptors involved are the translational entropy

(Strans), the maximum partial charge (ZPCmax,H) and the average bond order

(BOavg,H) for a hydrogen atom. The translational entropy is defined as,

Strans = ln

/ /2
2

1 2 5 2�mkT

h

V e

N

�

�
�

�

�
� ,

where V is the volume of the system and N is the Avogadro’s number. ZPC is

the partial atom charge calculated using Zefirov’s algorithm of the Sander-

son electronegativity scheme.8b The Mulliken bond order8b for a given pair

of atomic species A and B in the molecule is defined as

486 A. R. KATRITZKY ET AL.



BOAB

A

occ

�
���
��� n c ci i j

i

� �

�� �1

,

where the first summation is performed over all occupied molecular orbitals

(ni denotes the occupation number of the i-th MO), and the two other sum-

mations over m and n, the atomic orbitals belonging to the atoms A and B

(A
B) in the molecule. MO coefficients are denoted as cim and cjn.

The involvement of the entropy factor and the other charge related and

bond order descriptors can be associated with the free energy pertinent to

the docking. For this sub-set also, no previous literature correlation is avail-

able for comparison.
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TABLE VIII

Results of correlations for ureas and for thioureas (n = 30)

#P R
2

F s B �B t Name of descriptor

1 0.645 50.8 0.181

0 13.8 0.8 17.7640 Intercept

1 –47.4 6.6 –7.1290

RPCG Relative

positive charge

(QMPOS/QTPLUS)

�Semi-MO PC	

2 0.769 44.9 0.149

0 369 68 5.4081 Intercept

1 0.310 0.034 9.0850
Structural Informa-

tion Content (order 1)

2 –3813 707 –5.3929

Max partial charge

for a H atom

�Zefirov’s PC	

3 0.888 68.4 0.106

0 585 74.8 7.8241 Intercept

1 3.34 0.26 12.8527
Translational

entropy (300 K)

2 –5671 610 –9.2928

Max partial charge

for a H atom

�Zefirov’s PC	

3 –183 35 –5.2511
Average bond order

of a H atom

4 0.927 79.8 0.087

0 770 71 10.7783 Intercept

1 –5644 510 –11.0739
Max partial charge

(Qmax) �Zefirov’s PC	

2 –4.41x10
–2

2.8x10
–3

–15.6206

Total molecular

2-center exchange

energy

3 –238 32 –7.3536
Average bond order

of a H atom

4 –0.541 0.121 –4.4630 CSA-2 of C atoms



Natural Sweeteners

This sub-set comprises naturally occurring substances including sugars

and their derivatives. For this sub-set of 20 compounds, correlation analysis

(Table IX) afforded the following two-parameter Eq. (13).

ln RS = –(315 � 36)ERmax,O – (31.5 � 4.0)VXYZ,R + (16.3 � 1.2) (13)

R2 = 0.905 F = 81.1 s = 0.219 n = 20

In this equation, ERmax,O and VXYZ,R correspond respectively to the max-

imum electrophilic reactivity index for an oxygen atom and the van der

Waals molecular volume releated to volume of XYZ box for inertia moment

oriented molecule.8b The descriptor ERmax,O, having inverse relationship

with the nucleophilicity, has a negative sign for its coefficient, which may

reflect the hydrogen bonding ability of the oxygen functionality. The second

descriptor, VXYZ,R is related to the shape of the molecule, and also has a neg-

ative coefficient. Attempts to use the only volume related descriptors lead to

poorer correlation with R2 = 0.4543.

In a previous work, a relationship (14) between the apparent molar vol-

ume (AMV) and GEPOL/87 volume functions for carbohydrates was repor-

ted,5a but this study also does not correlate molecular descriptors directly

with the sweetness potency.

AMV = (0.750 � 0.025)Vm – (1.83 � 4.4) (14)
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TABLE IX

Results of correlations for natural products (n = 20)

#P R
2

F s B �B t Name of descriptor

1 0.782 64.4 0.327
0 5.85 0.38 15.2832 Intercept

1 –2.06 0.26 –8.0250 LUMO+1 energy

2 0.905 81.1 0.219

0 16.3 1.2 13.0850 Intercept

1 –315 36 –8.6383

Max electroph.

react. index for an

O atom

2 –31.5 4.0 –7.9053
Molecular volume/

XYZ box

3 0.920 61.4 0.208

0 –4.47 2.49 –1.7919 Intercept

1 10.7 1.2 9.0525
Average Information

content (order 0)

2 36.8 5.2 7.0985
Min net atomic

charge

3 0.347 0.11 3.1622
Kier flexibility

index



Miscellaneous Sweeteners

For this group consisting of the remaining 7 sweeteners (Figure 1),

which do not fit with any of the sub-sets discussed above, a one-parameter

correlation (15) involving translational entropy is obtained (Table X).

Because of a lack of discriminating features for this subset, it is not pos-

sible to carry out a literature search for previous correlations.

ln RS = (2.59 � 0.25)Strans – (101 � 10) (15)

R2 = 0.957 F = 112 s = 0.266 n = 7

Peptides

The sweetness of peptides depends on their stereochemical structure. As

only (active) L,L-stereoisomers were included the set considered, the result-

ing QSPR equations are valid only for this stereochemical class of com-

pounds. The sweetness potency of this sub-set of 87 sweeteners with peptide

bonds (–NH–CO–) was analysed by the heuristic and the best multi-linear

regression methods. The best correlations (Table XI) include the statistically

significant four- and five-parameter Eqs. (16) and (17).
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Figure 1. Structures of miscellaneous sweeteners.



ln RS = –(6.52 � 0.61) � 10–4Htot + (43.7 � 10.0)ZPCmax +

(1.54 � 0.47)#Cl + (16.8 � 5.5)qmin,N – (2.44 � 2.59) (16)

R2 = 0.649 F = 37.8 s = 0.145 n = 87

ln RS = (7.48 � 0.71) � 10–2Stot – (47.4 � 9.5)ZPCmax + (1.87 � 0.45)#Cl +

(0.630 � 0.184)Een,CO + (18.0 � 5.5)qmin,N – (266 � 76) (17)

R2 = 0.688 F = 35.7 s = 0.138 n = 87

The descriptors in Eqs. (16) and (17) are the total enthalpy8b (Htot), Zefi-

rov’s maximum partial charge (ZPCmax), the number of chlorine atoms (#Cl),

Mulliken’s minimum net atomic charge8b for a nitrogen atom (qmin,N), the to-

tal entropy (Stot), and the maximum electron-neutron attraction for a car-

bon-oxygen bond (Een,CO). The enthalpy and entropy factors presumably

model the free energy of docking the sweetener with the receptor site. The

other descriptors may reflect hydrogen bonding and electrostatic interac-

tions involved in docking.

The plurality of conformations and the lack of descriptors for taking into

account the absolute configuration of the stereocenters in the many chiral

sweeteners in this sub-set could preclude better correlations.

The only5a previously reported correlation for peptide sweeteners was

the use of GEPOL/87 computer program to predict apparent specific volume

(ASV) and apparent molar volume (AMV) which, in turn, allow quantitative

prediction of sweetness. The sweet taste corresponds to ASV values in the

range of 0.52–0.71,5a and a good correlation was found between AMV and

the molecular volume: AMV = (0.811 � 0.045)Vm – (11.4 � 5.8) (r = 0.978) for

17 amino acids. However, this correlation does not constitute a structure-

taste relationship.
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TABLE X

Results of correlations for unclassified structures (n = 7)

#P R
2

F s B �B t Name of descriptor

1 0.957 112 0.264
0 –101 10 –10.03 Intercept

1 2.59 0.24 10.60 Translational entropy

2 0.997 647 0.079

0 14.5 0.6 –22.6451 Intercept

1 4.83 0.2 26.0874
Average Information

content (order 2)

2 145 9 15.4931

Maximum 1-electron

reaction index for a

C atom



Later, the same group reviewed5b the molar volume contribution to the

sweet taste and proposed an association of sweet taste with another solution

property viz. the partial molar isentropic compressibility which defines the
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TABLE XI

Results of correlations for peptides (n = 87)

#P R
2

F s B �B t Name of descriptor

1 0.483 79.5 0.172

0 –6.66 1.48 –4.4965 Intercept

1 0.749 0.084 8.9167
Information content

(order 0)

2 0.573 56.4 0.155

0 –13.3 1.9 –6.8380 Intercept

1 8.04x10
–2

7.9x10
–3

10.1568 Total entropy

2 52.7 10.7 4.9137

Maximum partial

charge (Qmax)

�Zefirov’s PC)

3 0.619 45.0 0.152

0 –13.0 1.8 –7.0514 Intercept

1 –8.22x10
–2

7.5x10
–3

10.8955 Total entropy

2 46.4 10.4 4.4720

Maximum partial

charge (Qmax)

�Zefirov’s PC)

3 1.52 0.48 3.1640 Number of Cl atoms

4 0.649 37.8 0.145

0 –2.44 2.59 –0.9412 Intercept

1 –6.52x10
–4

6.1x10
–5

10.7537 Total enthalpy

2 43.7 10.0 4.3633

Maximum partial

charge (Qmax)

�Zefirov’s PC)

3 1.54 0.47 3.3093 Number of Cl atoms

4 16.8 5.5 3.0613
Minimum net atomic

charge for a N atom

5 0.689 35.7 0.138

0 –266 76 –3.5239 Intercept

1 7.48x10
–2

7.1x10
–3

10.4867 Total entropy

2 47.4 9.5 4.9719

Maximum partial

charge (Qmax)

�Zefirov’s PC)

3 1.87 0.45 4.1696
Number of chlorine

atoms

4 0.630 0.184 3.4243

Maximum e-n

attraction for a C-O

bond

5 18.03 5.46 3.3030
Minimum net atomic

charge for a N atom



compactness of the hydration layer around sweet molecules. This study did

not propose any structure-sweetness correlation.

Global Set of Sweeteners with Quantitative Sweetness Potencies

Before discussing global correlations covering the whole set of sweeten-

ers, the question of whether there exists single or multiple sweetness recep-

tors must be considered. This is contraversial. Nofre et al.7a suggest a single

receptor with multiple recognition sites and that different classes of sweet-

ness contain different numbers of binding sites. However, Linderman and

co-workers7b have demonstrated rather convincingly that different sweeten-

ers have different signaling pathways, and Shaeffer et al.7c provide sensory

evidence for multiple receptors. Sugars generally probably have a different

mode of action than high potency sweeteners.6b Further complications in-

clude the fact that only some sweeteners have synergy, the taste can be ob-

served at different part of the tongue-front or middle, and one can block the

sweetness of some compounds. Nevertheless, even if different classes of

compounds interact with different receptors, their biological and structural

similarity of them may lead to similar interactions governed by similar des-

criptors. The results obtained in Eqs. (18) – (21) with significant correlation

coefficients seem to indicate that similar interactions are responsible for the

sweetness of structurally different compounds.

Correlation analysis of the general set of 238 sweeteners using linear re-

gression methods (Table XII) provides significant four- and five-parameter

correlation Eqs. (18) and (19).

ln RS = (1.59 � 0.12) � 10–3GI + (2.08 � 0.15) � 10–2FT –

(0.177 � 0.034)#Baromatic + (18.0 � 4.5)ZPCmax,C + (1.05 � 0.31) (18)

R2 = 0.671 F = 119 s = 0.108 n = 238

ln RS = (1.38 � 0.13) � 10–3GI + (1.57 � 0.21) � 10–2FT –

(0.144 � 0.035)#Baromatic + (22.6 � 4.6)ZPCmax,C –

(34.9 � 10.7)PSAO + (2.14 � 0.45) (19)

R2 = 0.686 F = 101 s = 0.098 n = 238 .

Eqs. (18) and (19) involve GI (gravitation index, all pairs8b), FT (thermo-

dynamic heat of formation of the molecule), #Baromatic (number of aromatic

bonds), ZPCmax,C (maximum partial charge for a carbon atom) and PSAO

(positively charged solvent accessible surface area8b of oxygen atoms). The

gravitational index defined as
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TABLE XII

Results of correlations for the general set of structures (n = 238)

#P R
2

F s B �B t Name of descriptor

1 0.443 188 0.140
0 0.567 0.421 1.3460 Intercept

1 3.65x10
–2

2.7x10
–3

13.6998 � polarizability

2 0.616 188 0.116

0 0.440 0.364 1.2083 Intercept

1 2.52x10
–2

1.3x10
–3

18.7386 Molecular weight

2 0.0153 0.0013 12.1751

Thermodynamic

heat of formation

of the molecule

3 0.648 144 0.112

0 1.492 0.297 5.0172 Intercept

1 1.77x10
–3

1.1x10
–4

16.0325
Gravitation Index

(all pairs)

2 2.08x10
–2

1.5x10
–3

13.8246

Thermodynamic

heat of formation

of the molecule

3 –0.168 0.035 –4.7360
Number of aromatic

bonds

4 0.671 119 0.108

0 1.05 0.308 3.4198 Intercept

1 1.59x10
–3

1.2x10
–4

13.6032
Gravitation Index

(all pairs)

2 2.08x10
–2

1.5x10
–3

14.2434

Thermodynamic

heat of formation

of the molecule

3 –0.177 3.4x10
–2

–5.1347
Number of aromatic

bonds

4 18.0 4.5 4.0078

Max partial charge

for a carbon atom

�Zefirov’s PC	

5 0.686 101 0.105

0 2.14 0.45 4.7711 Intercept

1 1.38x10
–3

1.3x10
–4

10.5752
Gravitation Index

(all pairs)

2 1.57x10
–2

2.1x10
–3

7.4524

Thermodynamic

heat of formation

of the molecule

3 –0.144 3.5x10
–2

–4.0858
Number of aromatic

bonds

4 22.6 4.6 4.9000

Maximum partial

charge for a C atom

�Zefirov’s PC	

5 –34.9 10.7 –3.2741
PSA-2 of Oxygen

atoms



GI p
A B

ABA <B
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� �
m m
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N

,

where mA and mB are the atomic masses of atoms A and B, rAB is inter-

atomic distance, and Np is number of atoms in molecule. The involvement of

all these descriptors has understandable physicochemical meaning as des-

cribed below.

The first descriptor, viz. the gravitation index, can be linked to the ex-

tent of docking. The descriptor coefficient for the number of aromatic bonds

has negative sign which probably indicates that the rigidity of the aromatic

rings renders the docking of the sweetener difficult. The maximum partial

charge for the carbon atom has a positive descriptor coefficient indicating

that an increase in the charge facilitates the interaction with the receptor

protein.

The positively charged solvent accessible surface area of oxygen goes

against the ability of oxygen to form hydrogen bonds with the protein mole-

cules and hence an increase in the value of this descriptor leads to decrea-

sed sweetness as evident from the negative sign of the descriptor coefficient.

Figure 2 depicts the comparison of the observed ln RS versus predicted ln RS

values for this global set on the basis of five-parameter equation. There is

no literature report available on the structure-sweetness correlation for the

global set of sweeteners.
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Figure 2. Plot of observed ln RS versus predicted ln RS for the whole set (n = 238) us-

ing five-parameter equation (19) (R2 = 0.686).



Global Set of Sweeteners Excluding the Peptide Sub-set

It was considered worthwhile to investigate whether the correlation for

the general set can be improved by deleting one or more sub-sets. Such an

improvement in correlation, in turn, can furnish additional, more reliable

information on the nature of factors involved in determining the sweetness

potency of the general set, besides the possibility of bringing out the sub-

set’s unique features pertinent to deviations to light. Many of the outliers

(63 structures, outside �2�, 95% reliability level) belong to three groups: the

aldoximes in the area of low sweetness, peptides in the medium area, and

the guanidines in the area of high sweetness (Table XIII). This is indirect

evidence for the existence of multiple receptor sites. A correlation was per-

formed on the general set excluding the largest sub-set, viz. 87 peptides

sweeteners and the results are listed in Table XIV. The results show that all

the correlations (both single and multi-parameter) are significantly impro-

ved for the general set lacking peptides.

The data in Table XIV are obtained from the following four- and five-pa-

rameter correlations (20 and 21 respectively), wherein structural informa-

tion content (order 0), thermodynamic heat of formation of the molecule, po-

larity parameter (Zmax – Zmin) and HOMO-1 energy are involved.
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TABLE XIII

Outliers (Eq. 19), sorted by ascending of experimental ln RS

# Class Exp. ln RS Calc. ln RS Diff.

S0240 Miscellaneous 1.585 –0.431 2.016

S0184 Aldoxime 2.623 5.298 –2.675

S0060 Aldoxime 2.927 0.406 2.521

S0061 Aldoxime 2.965 0.693 2.272

S0079 Aldoxime 2.996 1.099 1.898

S0187 Aldoxime 3.064 5.011 –1.947

S0276 Peptide 3.270 5.136 –1.865

S0205 Natural 3.451 5.666 –2.215

S0186 Aldoxime 3.494 5.521 –2.027

S0057 Aldoxime 3.848 1.386 2.462

S0183 Miscellaneous 3.892 5.704 –1.811

S0076 Aldoxime 3.904 2.079 1.825

S0275 Peptide 3.934 5.768 –1.834

S0095 Aldoxime 4.036 2.079 1.957

S0084 Aldoxime 4.104 6.009 –1.904

S0390 Peptide 4.220 0.000 4.220

S0315 Urea 4.225 2.303 1.923

S0054 Aldoxime 4.346 6.215 –1.869
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S0299 Miscellaneous 4.347 8.294 –3.947

S0100 �–Sulfonyl acid 4.365 2.398 1.967

S0304 Urea 4.423 6.551 –2.127

S0048 Aldoxime 4.660 7.048 –2.387

S0075 Aldoxime 5.184 2.303 2.882

S0212 Natural 5.219 9.105 –3.885

S0393 Peptide 5.305 2.303 3.003

S0089 Aldoxime 5.493 2.303 3.191

S0104 �–Sulfonyl acid 5.635 3.784 1.851

S0269 Peptide 5.997 3.912 2.086

S0214 Natural 6.208 3.912 2.297

S0286 Peptide 6.521 4.605 1.916

S0409 Peptide 6.545 4.605 1.940

S0268 Peptide 6.569 8.987 –2.418

S0249 Peptide 6.659 9.105 –2.446

S0415 Peptide 6.669 8.517 –1.848

S0337 Peptide 6.832 10.820 –3.988

S0416 Peptide 6.881 8.854 –1.973

S0253 Peptide and urea 6.884 8.854 –1.969

S0250 Urea 6.961 9.616 –2.655

S0399 Peptide 7.056 4.500 2.556

S0402 Peptide 7.059 4.248 2.811

S0422 Peptide 7.181 2.996 4.185

S0410 Peptide 7.350 5.298 2.052

S0342 Peptide 7.434 10.597 –3.162

S0357 Urea 7.458 10.127 –2.669

S0401 Peptide 7.541 4.700 2.841

S0403 Peptide 7.573 0.693 6.880

S0400 Peptide 7.600 5.560 2.039

S0244 Guanidine 7.683 5.858 1.825

S0411 Peptide 7.831 5.298 2.533

S0424 Peptide 7.938 5.991 1.946

S0363 Guanidine 8.509 4.605 3.904

S0317 Guanidine 8.735 10.714 –1.989

S0044 Peptide 9.257 7.090 2.167

S0260 Guanidine 9.383 12.206 –2.823

S0262 Guanidine 9.449 12.324 –2.874

S0258 Guanidine 9.554 11.695 –2.141

S0333 Guanidine 9.614 11.695 –2.081

S0226 Miscellaneous 9.777 6.397 3.380

S0344 Guanidine 9.868 12.044 –2.176

S0334 Guanidine 9.878 12.206 –2.328

S0364 Guanidine 9.925 5.858 4.067

S0321 Guanidine 9.964 11.775 –1.812

S0227 Guanidine 10.649 7.003 3.646

S0324 Guanidine 11.477 8.517 2.960

TABLE XIII (Cont.)
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TABLE XIV

Results of correlations for general set excluding peptide sub-set (n = 151)

#P R
2

F s B �B t Name of descriptor

1 0.599 223 0.169
0 1.05 0.37 2.8208 Intercept

1 0.176 0.012 14.9261 SA-2 of C atoms

2 0.770 248 2.487

0 0.147 0.341 0.4317 Intercept

1 –1.54x10
–3

7x10
–5

–21.0229
Total molecular 1-

center E-N attraction

2 2.34x10
–2

1.4x10
–3

17.1355

Thermodynamic

heat of formation of

the molecule

3 0.794 189 0.128

0 5.98 1.01 5.9399 Intercept

1 0.371 0.017 22.1669
Structural informa-

tion content (order 1)

2 1.31x10
–2

1.2x10
–3

11.2776

Thermodynamic

heat of formation of

the molecule

3 –2.89 4.04 –7.1596

Polarity parameter

(Qmax-Qmin) (Zefirov’s

PC)

4 0.820 166 0.114

0 18.8 3.2 5.9551 Intercept

1 0.507 0.038 13.3883
Structural informa-

tion content (order 0)

2 9.89x10
–3

1.18x10
–3

8.3961

Thermodynamic

heat of formation of

the molecule

3 –25.9 4.05 –6.4003

Polarity parameter

(Qmax-Qmin) �Zefirov’s

PC	

4 1.22 0.23 5.3537 HOMO-1 energy

5 0.842 154 0.108

0 18.3 2.98 6.1389 Intercept

1 0.50 0.036 14.0190
Structural informa-

tion content (order 0)

2 1.03x10
–2

1.1x10
–3

9.2400

Thermodynamic

heat of formation of

the molecule

3 1.23 0.27 4.4696
Number of chlorine

atoms

4 –23.7 3.8 –6.1694

Polarity parameter

(Qmax-Qmin) �Zefirov’s

PC	

5 1.22 0.21 5.6832 HOMO-1 energy



ln RS = (0.507 � 0.038) 0SIC + (9.89 � 0.118) � 10–2FT –

(25.9 � 4.0)(ZPCmax – ZPCmin) + (1.22 � 0.23)eHOMO-1 + (18.8 � 3.2) (20)

R2 = 0.820 F = 166 s = 0.114 n = 151

ln RS = (0.500 � 0.036) 0SIC + (1.03 � 0.11) � 10–2FT – (1.23 � 0.27)#Cl –

(23.7 � 3.8)(ZPCmax – ZPCmin) + (1.22 � 0.21)eHOMO-1 + (18.3 � 3.0) (21)

R2 = 0.842 F = 154 s = 0.108 n = 151

The structural information content8b (0SIC) is a topological index is ba-

sed on Shannon information theory and is defined as:

k
k

n
SIC

IC
�

log 2

,

k i i

i

k n

n

n

n
IC � 


�
� log 2

1

where ni is a number of atoms in the i-th class, n is the total number of at-

oms in the molecule, and k is the number of atomic layers in the coordina-

tion sphere around a given atom that is accounted for (in our case k = 0).

The significance of these parameters can be explained in line with the

influence of several descriptors, discussed in the previous sets, on the free

energy of the docking of the sweetener with the protein receptors.

Nature of Interactions Involved in the Sweetening Process

The descriptors emerged from the foregoing correlations are classified

and tabulated in Table XV with a view to identifying the important factors

contributing to sweetness. Quantum chemical descriptors appear most fre-

quently (15 times), followed by electrostatic (11 times), constitutional (9

times), thermodynamical (8 times), geometrical (3 times) and topological (2

times). The influence of these descriptors on the sweetness potency varies as

is evident from the relative magnitudes of the descriptor coefficients in the

correlation equations. The constitutional, topological, geometrical, surface-

and/or size- related descriptors may influence the binding of the sweetener

with the receptor, while the electronic and charge related descriptors may

influence the chemical reactivity and/or the electrostatic interactions be-

tween the sweetener and the receptor.
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TABLE XV

Descriptors encountered in the correlation equations of sweetness potency

S/No Name of descriptor
Occurring

equation

Constitutional

1 Number of oxygen atoms 1, 2

2 Number of chlorine atoms 16, 17, 21

3 Gravitation index 18, 19

4 Number of aromatic bonds 18, 19

Topological

5 Structural information content (order 0) 20, 21

Geometrical

6 Solvent accessible surface area of carbon 1

7 Moment of Inertia C 11

8 Molar volume / XYZ Box 13

Electrostatic

9 Positively charged solvent accessible surface area of carbon 2

10 Hydrogen acceptor solvent accessible charged surface area 11

11 Maximum partial charge for a hydrogen atom 12, 17

12 Maximum partial charge 16, 17

13 Maximum partial charge for a carbon atom 18, 19

14 Positively charged solvent accessible surface area of oxygen 19

15 Polarity parameter 20, 21

Quantum chemical

16 Positively charged solvent accessible surface area of carbon 2

17 Average electrophilic reaction index of carbon 2

18 Maximum coloumbic interaction for the carbon-hydrogen bond 6

19 Maximum net atomic charge for a hydrogen atom 7

20 Minimum resonance energy for a carbon-chlorine bond 7

21 Minimum electrophilic reaction index for a carbon atom 10

22 Minimum one electron reaction index for a sulphur atom 10

23 Minimum electron-electron repulsion for a carbon-carbon bond 11

24 Average bond order for a hydrogen atom 12

25 Maximum electrophilic reaction index for oxygen 13

26 Minimum net atomic charge for a nitrogen atom 16, 17

27 Maximum electron-neutron attraction for a carbon-oxygen bond 17

28 Energy of the highest occupied molecular orbital* 20, 21

Thermodynamic

29 Translational entropy 12, 15

30 Total enthalpy 16

31 Total entropy 17

32 Thermodynamic heat of formation of the molecule 18,19,20,21



CONCLUSIONS

The development of significant QSAR or QSPR equations by extraction

of molecular descriptors from large descriptor spaces has assisted in the

prediction of many physical properties and biological activities of chemical

compounds. The present work demonstrates that analogous QSPR equa-

tions can be developed for the description of the complex biochemical pro-

cesses of sweetness. The descriptors employed in the best correlation equa-

tions can indicate the interactions involved in the sweet taste mechanism

and the underlying docking process.

It is possible that a unique blend of factors could influence the sweet-

ness property of different classes of sweeteners because of the variation in

the nature of the functionality and the extent of interaction with the recep-

tor in docking, despite the possible involvement of different receptors with

different functionalities. Interestingly, descriptors pertinent to enthalpy, en-

tropy, polarity, shape, charge distribution and structure are those often en-

countered in different types of sweeteners as factors that determine the

sweetness potency.

Acknowledgement. – We thank the NutraSweet Company for support of this work.
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SA@ETAK

Kvantitativna analiza odnosa strukture i stupnja slatko}e
s pomo}u programa CODESSA

Alan R. Katritzky, Ruslan Petrukhin, Subbu Perumal, Mati Karelson,

Indra Prakash i Nitin Desai

397 prirodnih i umjetnih sladila klasificirano je na temelju njihove strukture u

devet skupina. Stupanj slatko}e koreliran je s kvantnokemijskim i drugim molekul-

skim deskriptorima upotrebom heuristi~kih i najboljih multilinearnih regresijskih

postupaka iz programskog paketa CODESSA. Kvantitativni modeli odnosa struktu-

re i svojstava (QSPR modeli) �ako nije druga~ije ozna~eno modeli sadr`avaju dva

deskriptora	, dobiveni za svaku pojedinu klasu sladila, imaju sljede}e vrijednosti R2:

0,835 za 47 aldoksima, 0,959 za 8 acesulfamata, 0,919 za 9 sulfamata, 0,941 za 10

�-arilsulfonilalkanoi~nih kiselina, 0,715 za 27 guanidina (0,802 u korelaciji s tri pa-

rametra), 0,769 za 30 uree/tiouree (0,888 u korelaciji s tri parametara), 0,905 za 20

prirodnih sladila, 0,957 za 7 raznovrsnih sladila (korelacija s jednim parametrom),

0,688 za 87 peptida (korelacija s pet parametara). Dan je tako|er i model za cjelo-

kupni skup sladila, koji uklju~uje pet deskriptora (R2 = 0,686), i koji je razmotren s

obzirom na mogu}nost postojanja jednoga ili vi{e receptora za sladila.
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