
Current Topics in Medicinal Chemistry 2002, 2, 1333-1356 1333

1568-0266/02 $35.00+.00 © 2002 Bentham Science Publishers Ltd.

The Present Utility and Future Potential for Medicinal Chemistry of
QSAR/QSPR with Whole Molecule Descriptors

Alan R. Katritzky1*, Dan C. Fara1, Ruslan O. Petrukhin1, Douglas B. Tatham2,
Uko Maran3, Andre Lomaka3 and Mati Karelson3*

1Center for Heterocyclic Compounds, Department of Chemistry, University of Florida,
Gainesville, Florida, 32611, USA

2Alchem Laboratories Corporation, 13305 Rachael Blvd., Alachua, Florida, 32615, USA

3Department of Chemistry, University of Tartu, 2 Jakobi Street, Tartu 51014, Estonia

Abstract: Whole-molecule descriptors are obtained computationally from molecular
structures using a variety of programs. Their applications are reviewed in the areas of
solubility, bioavailability, bio- and nonbio-degradability and toxicity.

I. INTRODUCTION AND SCOPE

Although there is no hard dividing line, many of the
manifestations of molecular structure fall into one of two
major classes: (i) the influence of a specific portion of the
molecule (as occurs with pharmacophores, fatty tails,
docking, and similar concepts); (ii) the influence of the
whole molecule (as occurs in considerations of solubility,
partition coefficients, migration, permeability, bioavaila-
bility and similar topics).

The effects of structural variation in a molecule are
distinct in the two classes, and their rationalization has been
approached from different standpoints. In general, most
quantitative structure property relationships (QSPR) fall into
class (ii) as manifestations of the whole structure. Many (but
by no means all) quantitative structure activity relationships
(QSAR) are strongly linked to specific regions of molecules,
and thus into class (i). The present review will concentrate
on broad division (ii).

II. OVERVIEW OF QSPR APPROACHES

The beginning of QSPR dates back more than a century.
In 1884 Mills developed a QSPR for predicting the melting
points and boiling points of homologous series [1]. Similar
pioneering work followed shortly after on quantitative
structure activity relationships (QSAR) in studies of
relationships between the potency of local anesthetics and
oil/water partition coefficient [2], and between narcosis and
chain length [3]. One subsequent attempt to link a property
to critical structural features was reported in 1925 when
Langmuir proposed linking intermolecular interactions in the
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liquid state to the surface energy [4]. The first theoretical
whole molecule descriptors, the Wiener index [5] and Platt
number [6], were proposed in 1947 to model the boiling
points of hydrocarbons. Important contributions to the area
were made by Hammett [7, 8] and Taft [9-12] via the
development of linear free energy relationships (LFER).

QSAR got real boosts in the development by Hansch and
Fujita [13] of models connecting biological activities and
the hydrophobic, electronic and steric properties of
compounds and from Free and Wilson’s development of
models of additive group contributions to biological
activities [14]. From this point QSAR methodology
expanded explosively in its provision of productive
applications in pharmaceutical chemistry and in computer
assisted drug design [15-20].

QSPR or quantitative structure related analysis of
physicochemical properties before 1970 had major
applications only in analytical chemistry. The last three
decades however have seen many efforts put into the
development of theoretical basis of QSPR with classical
contributions from the groups of Abraham [21, 22], Balaban
[23], Hilal [24], Jurs [25], Katritzky and Karelson [26], Kier
and Hall [27], Politzer [28], Randic [29], Trinjastic [30] and
others. The development of methodology was also supported
by the simultaneous development of molecular structure-
based descriptors [31, 32] that gave possibility to describe
molecules more precisely.

Nowadays QSPR is well-established and correlates
varied, including complex, physicochemical properties of a
compound with its molecular structure, through a variety of
descriptors. The basic strategy of QSPR is to find the
optimum quantitative relationship, which can then be used
for the prediction of the properties of molecular structures
including those unmeasured or even unknown. QSPR
became more attractive for chemists with development of
new software tools, which allowed them to discover and to

husain
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Table 1. Major Areas to Which QSPR has Been Applied, Data Sets Studied with Number of Compounds Involved, Methods used
and Comments

# Physical
properties

Compounds Na Mb Comments References

1 Boiling point diverse organic
compounds

137 MLR, 4 the dominant intermolecular interaction is related to the molecular surface
energy, derived from the molecular surface area and the charge density
distribution; atomic charge scaling factors required to correct the partial

charges calculated by the extended Hückel theory

Grigoras [132]

furans,
tetrahydrofurans

thiophenes

209

134

MLR, 11

MLR, 7

the charged partial surface area (CPSA) descriptors, which combine solvent
accesible surface areas with partial atomic charges were used; CPSA

descriptors in  combination with various constitutional, topological, and other
descriptors shown to be useful for homologous series of heterocycles

Stanton et al. [133]

pyrans

pyrroles

furans,
tetrahydrofurans,

thiophenes, pyrans,
pyrroles

146

278

752

MLR, 7

MLR, 7

MLR, 11

the authors concluded that due to structural differences between nitrogen
heterocycles and sulfur and oxygen heterocycles, various connectivity,

electronic, constitutional and CPSA descriptors cannot adequately encode
enough information for a combined set of heterocycles

Stanton et al. [134]

furans,
tetrahydrofurans,
thiophenes, pyrans

299 MLR, NN both methods had the same quality of prediction for the training set Egolf and Jurs
[135], Egolf et al.

[136]

pyridines 572 for pyridines, in the case of the cross-validation set, the NNs outperformed
conventional QSPR; descriptors that reflect hydrogen bonding and dipole-

dipole interactions improved the predictive models for the pyridines data set

diverse organic
compounds

298 for this set the back-propagation NN combination resulted in 1K
improvement over the MLR

alkanes 150 NN 10:7:1 architecture; the performance was slightly better in comparison with
the MLR methods

Cherqaoui and
Villemin [137]

acyclic ethers,
peroxides, acetals
and their sulfur

analogues

185 NN 20:5:1 architecture; back-propagation NN has lead to a better correlation in
comparison with the 15-parameter equation obtained using MLR

Cherqaoui et al.
[138]

hydrocarbons 267 MLR, 6,
NN

the 6:5:1 architecture gave a s = 5.7 K value, better than the root mean
square for the MLR equation

Wessel and Jurs
[139]

diverse organic
compounds

1023 MLR, 9 the model used two topological and seven topochemical descriptors and
demonstrated that the topochemical descriptors can be successfully applied

to the prediction of boiling points

Basak et al. [140]

understand how molecular structure influences properties,
and very importantly, to predict and prepare the optimum
structure. The software is now more amenable for chemical
and physical interpretation. QSAR has gained more attention
in medicinal chemistry in comparison with QSPR. There are
still tremendous opportunities for developments in the
application of purely structure-based molecular descriptors
[31, 32] in QSAR models and in the application of
quantitative property-activity relationships (QPAR) through
the use of physicochemical properties predicted with QSPR.

The QSPR approach has been applied in many different
areas, including (i) properties of single molecules (boiling
point, critical temperature, vapor pressure, flash point and
autoignition temperature, density, refractive index, melting
point); (ii) interactions between different molecular species
(octanol/water partition coefficient, aqueous solubility of
liquids and solids, aqueous solubility of gases and vapors,

solvent polarity scales, GC retention time and response
factor); (iii) surfactant properties (critical micelle
concentration, cloud point); (iv) complex properties and
properties of polymers (polymer glass transition temperature,
polymer refractive index, rubber vulcanization acceleration)
[33]. Many of these are directly or indirectly relevant to
medicinal chemistry.

In Table 1 we have summarized work in some of the
major areas to which QSPR has been applied. Table 1 covers
mainly the last ten years during which the development
started to shift from relatively small to large (>100
compounds) data sets. Also multi-linear (MLR) methods are
now accompanied by computational neural networks (NN)
that have been utilized to describe non-linear relationships
between structure and property. For additional information
reader is directed to our other review articles in this field
[26, 33-35].
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(Table 1). contd.....

# Physical
properties

Compounds Na Mb Comments References

O, S, and halogens
containing
compounds

N containing
compounds

248

104

MLR, 10

MLR, 10

calculated  structural descriptors have been used to build two models,
which predict accurately normal boiling points for organic compounds

containing heteroatoms

Wessel and Jurs
[141]

O, N, Cl, and Br
containing
compounds

298 MLR, 2 gravitation index and hydrogen donor charged surface area  had well-
defined physical meaning: bulk cohesiveness, dispersion, cavity-formation

effects in liquids, and hydrogen-bonding ability of the molecule

Katritzky et al.
[142]

O, N, Cl, and Br
containing
compounds

298 MLR, 4 included, in addition, the most negative atomic partial charge and the
number of chlorine atoms in the molecule; the equation offered a good

average prediction error (2.3%)

Katritzky et al.
[142]

C, H, O, N, S, F, Cl,
Br, and I containing

compounds

584 MLR, 8 the model appears to be general for a wide variety of organic compounds
and offers a standard prediction error of 15.5 K, enabling thus for a

confident prediction of the normal boiling points of organic compounds on
the basis of their chemical structure

Katritzky et al.
[143]

O, S, and halogens
containing
compounds

halogenated alkanes

185

534

MLR, 6

MLR, 5

proved the applicability of various classes of descriptors and multilinear
regression (MLR) techniques to develop QSPR models using CODESSA

software

Balaban et al. [144]

2 critical
temperature

diverse organic
compounds

137 MLR, 4 electrostatic molecular surface interaction descriptors were designed to
account for the polar interactions of various heteroatoms, and the

molecular surface has been divided into atomic surface contributions,
accounting for dispersion, polar, and hydrogen-bonding interactions

Grigoras [132]

diverse organic
compounds

147 MLR, 8 the model included two CPSA descriptors, simple counts of atoms and
bonds, topological descriptors, and charge distribution

Egolf et al. [136]

diverse organic
compounds

165 MLR, 3 this model confirmed that dispersion and cavity formation in the liquid state
can be represented by a function of the gravitation index

Katritzky et al.
[145]

3 vapor pressure alkenes, alcohols 186 MLR, 5 the authors used a multifunctional autocorrelation method; the five-
descriptor equation was superior to previous models

Chastrette et al.
[146]

diverse organic
compounds

476 MLR, 10 the topological descriptors involved in this equation revealed the
importance of connectivity of atoms in accounting for  the variation in

structures

Basak et al. [147]

diverse organic
compounds

479 MLR, 10 α-polarizability, appeared as the most important descriptor from the model Liang and
Gallagher [148]

diverse organic
compounds

411 MLR, 5 this model indicates the similarity between the structural factors found for
the vapor pressure, the boiling point and critical temperature

Katritzky et al.
[100]

diverse organic
compounds

420 MLR, 8,

NN, 10

the 8-parameter model is based entirely on topological information; the 10-
parameter NN model includes geometric descriptors and shows an

improvement in prediction

McClelland and
Jurs [149]

diverse organic
compounds

469 MLR, 12 hierarchical approach as well as nonhierarchical methods used to develop
QSPR models for the estimation of vapor pressure; both of these methods

have similar predictive quality

Basak and Mills
[150]

hydrocarbons 274 NN the back-propagation NN model (7-29-1 architecture) predicted vapor
pressure with an average absolute error of 0.039 log units; it is capable of

estimating vapor pressure as a function of temperature

Yaffe and Cohen
[151]

4 flash point and
autoignition
temperature

hydrocarbons,
alcohols, and esters

312 MLR, NN for this data set, both methods give satisfactory results by division of the
structures into different subsets

Egolf and Jurs
[152], Mitchell and

Jurs [153]

pyridines 126 MLR, 4 a modest correlation has been obtained in this case Murugan et al.
[154]

pyridines 121 MLR, 6 the descriptors involved, indicated that the molecular bulk and hydrogen-
bonding effects are important in determining the flash point

Katritzky et al.
[155]
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(Table 1). contd.....

# Physical
properties

Compounds Na Mb Comments References

diverse organic
compounds

85 NN the authors had used both radial basis and back-propagation NN, both led
to satisfactory models for the training set, but performed much worse for

the validation set

Tetteh et al. [156]

diverse organic
compounds

78 NN the biharmonic spline interpolation has been used in the hidden layer of
NN, but the models obtained for training, validation, and test sets are of

moderate quality

Tetteh et al. [157]

diverse organic
compounds

271 MLR, 3,
3, 2, 4, 8

the authors have correlated experimental flash point with theoretical
descriptors (3-parameter model), and with experimental boiling point (3-
parameter model), and  predicted boiling points as descriptors (2-, 4-, 8-

parameter models); the statistical data prove that all these models allow the
prediction of the flash points accurately

Katritzky et al.
[158]

5 density C, H, N, O, S, F, Cl,
Br, and I containing

compounds

303 MLR, 2 this general QSPR treatment provided an excellent two-parameter model
for densities (R2=0.9749, s=0.0458)

Karelson and
Perkson [159]

hydrocarbons 106 NN using descriptors derived from graph theory, the authors obtained an
average error of 0.60% for a prediction set of 25 compounds

Gakh et al. [160]

alkenes

alkenes

66

51

NN

NN

the results obtained for these two sets  using 5 slightly different topological
descriptors for every case have similar quality

Hu et al. [161, 162]

6 refractive index diverse organic
compounds

125 MLR, 5 according to the model, molecular polarizability, the charge distribution,
hydrogen-bonding interactions, and molecular size determine the value of

the refractive index

Katritzky et al.
[163]

hydrocarbons 106 NN 7 topological descriptors have been used and an average error of 0.16%
was reached

Gakh et al. [160]

alkenes 51 NN 5 topological descriptors, in 5:5:1 architecture NN give 0.11% relative
standard deviation

Hu et al. [162]

alkenes 66 NN 5 different topological descriptors and 0.13% relative standard deviation
characterized this model

Hu et al. [161]

7 melting point alkanes 366 MLR, 11 the model correlated both branched and unbranched compounds with an
“intermolecular force equation”

Charton and
Charton [164]

mono- and
disubstituted benzenes

443 MLR, 9 the MLR equation obtained shows the importance of hydrogen-bonding
descriptors

Katritzky et al.
[165]

polychlorinated
biphenyls

209 GA WHIM descriptors applied; 82 compounds test set which has a 4-
parameters equation (R2=0.82)

Gramatica et al.
[166]

diverse pyridinium
bromides

126 MLR, 6 the regression equation obtained shows the importance of information
content indices, average nucleophilic reactivity index for a N atom, and

total entropy  per atom.

Katritzky et al.
[167]

8 octanol-water
partition

coefficient

diverse organic
compounds

302 MLR, 18 the descriptors used are: semiempirical atomic charges, molecular volume,
surface area, ovality, dipole moment, HOMO/LUMO energies

Bodor et al. [168]

diverse organic
compounds

1230 MLR, 14 the authors used atom-type descriptors together with factors for proximity
effects, unsaturation, intramolecular hydrogen bonding, and ring structures

Moriguchi et al.
[169, 170]

diverse organic
compounds

1663 MLR, 94 Computer Automated Structure Evaluation (CASE) program has been used
to identify group contributions and correction factors automatically for logP

estimation

Klopman et al.
[171]

diverse organic
compounds

diverse organic
compounds

2351

6055

MLR

MLR

authors used AFC (atom/fragment contibution) approach; 130 simple
fragment contributions and 235 correction factors were derived for two

sets: a training set (2351 compounds) and a validation set (6055
compounds)

Meylan and
Howard [172]

pyridines 70 MLR, 6 a 6-parameter model reflected the electrostatic and structural features of
nitrogen atoms; Kier and Hall valence connectivity index of the zeroth
order and the number of double bonds proved to be the most significant

descriptors for this data set

Katritzky et al.
[155]
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(Table 1). contd.....

# Physical
properties

Compounds Na Mb Comments References

diverse organic
compounds

219 MLR, 11 stepwise regression analysis and a set of 100 topological, topochemical, and
geometric descriptors has been used to develop the 11-parameter model

Basak et al. [140]

diverse organic
compounds

6675 MLR 363 electrotopological state indices and topological shape descriptors has
been used in a model, based on a LFER approach

Gombar and
Enslein [173]

diverse organic
compounds

981 MLR LSER parameters have been used for correlation Luehrs et al. [174]

N, O, halogens, P
and/or S containing

compounds

519 NN a 35:32:1 architecture was  used to predict logP Devillers [175]

9 solvent polarity
scales

diverse solvents 25 MLR, 3 this model were used to predict S' value of a total of  67 solvents; the
correlation equation includes three orthogonal theoretical molecular
descriptors: the average structural information content (order 0), the

weighted partial negative surface area, and the hydrogen-bonding acceptor
surface area

Katritzky et al.
[176]

diverse organic
compounds

48 MLR, 2 authors used MQSPR (model-based QSPR), which selects descriptors prior to
the correlation analysis; two orthogonal descriptors: the dipolar density and
the reciprocal of the HOMO-LUMO energy gap, are involved in the model

Mu et al. [177]

diverse solvents 350 MLR 45 different solvent polarity scales were analyzed and for each of them a
QSPR model was constructed using only theoretical descriptors calculated
by CODESSA program; of the 45 models, 27 give R2 > 0.90 and just 2 had

R2 < 0.82

Katritzky et al.
[72]

10 GC retention
time and

response factor

diverse organic
compounds

152 MLR, 6 in the case of retention time, the most important descriptors are α
polarizability and the minimum valency at an H atom; in the case of response
factor, the most important descriptors are the relative weight of “effective”

carbon atoms and the total molecular one-center one-electron repulsion
energy in the molecule

Katritzky et al.
[78]

organosulfur
compounds

37 MLR, 6 this TLSER (theoretical linear solvation energy relationship) investigation of
the GC retention indices gave similar correlations to that of the previous
study on the same compounds, with topological and CPSA descriptors, by

Woloszyn and Jurs

Donovan and
Famini [178],

Woloszyn and Jurs
[179]

methyl-branched
hydrocarbons

178 MLR, 4 the molecular graphs utilized in topological descriptors and supported by
quantum-chemical descriptors have been found to have high coding

capabilities for the GC retention index

Katritzky et al.
[84]

11 critical micelle
concentration

nonionic surfactants 77 MLR, 3 the descriptors involved in the model represent contributions of the
hydrophobic group and the size of the hydrophilic group

Katritzky et al.
[180]

anionic surfactants 119 MLR, 3 the equation contains information about hydrophobic-hydrophilic domains of
the surfactant molecules; the dipole moment is involved in the model as a

descriptor for the entire molecule

Katritzky et al.
[181]

12 cloud point nonionic surfactants 62 MLR, 4 this model estimated the effect of diverse hydrocarbon tail structures, using
the logarithm of the ethylene oxide count and three topological terms

Huibers et al.
[182]

alkyl ethoxylate
surfactants

23 MLR, 4 two topological and two constitutional descriptors are involved in the MLR
equation

Bünz et al. [183]

13 polymer glass
transition

temperature

diverse compounds 35 GFA, 6 the authors used GFA (genetic function approximation), an extension of the
genetic algorithm, which gave the same result like EP (evolutionary

programming) method applied by Luke to the same set of compounds

Rogers and
Hopfinger [184],

Luke [185]

high molecular
weight polymers

88 MLR, 5 the descriptors involved in the model are related to the rotational flexibility
of the molecules, hydrogen-bonding interactions, the branching of the

polymer molecules, and electrostatic interactions between polymer
molecules

Katritzky et al.
[186]

14 polymer
refractive index

different polymers 183 MLR, 10 the descriptors involved in the model are topological, the total number of
intramolecular rotational degrees of freedom, constitutional descriptors, and

the number of hydrogen-bonding moieties

Bicerano [187]

amorphous
homopolymers

95 MLR, 5 the model shows the important influence of the polarizability on the
refractive index of polymers just as for the low molecular weight compounds

Katritzky et al.
[188]

15 rubber
vulcanization
acceleration

disulfides,
sulfenamides, and

sulfenimides

a CODESSA QSPR treatment correlated various parameters, including the
onset of cure and the maximum rate of vulcanization, with molecular

descriptors

Katritzky et al.
[189]

a N = number of compounds from data set,
b M = method (MLR – multiple linear regression, NN – neural network, GA – genetic algorithm) and number of descriptors involved in the model
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III. AVAILABLE SOFTWARE

Commercially available statistical software packages such
as SAS [36], SPSS family [37], STATISTICA [38],
UNISTAT [39], STATGRAPHICS [40], S-PLUS [41],
include standard multilinear least-squares techniques and
can, in principle, be used to develop QSAR/QSPR
correlations. Their extensive use in the QSAR/QSPR
development is somewhat hindered because frequently: (i)
there is significant specific chemical loading of the task
(molecular modeling, calculation the molecular descriptors),
(ii) it is necessary to provide a permanent bridge between the
specifically chemical portion and the statistical portion
during the iterations of a model creation, (iii) there is a lack
of development for the statistical part of the QSPR/QSAR
practice (lack of specific statistical methods, and in
scalability of the standard statistical packages). The problem
may be solved on the level of standards for binary
compatibility (COM/DCOM/COM+ and the recently .NET
as the most usable) [42, 43] supported by many statistical
packages. However the complexity of the above mentioned
standard can be overwhelming for the average chemical
software programmer, and thus the development of
standalone QSPR/QSAR packages continues.

Numerous software packages have been developed
specifically for structure–activity/property relationship
studies by commercial software providers. Tripos, Inc., St.
Louis, MO, provides a set of programs [44] that can be used
for QSPR tasks; however, there is a concentration on
CoMFA based and geometrical descriptors. Included in
ChemEnl ightenT M  [45] package Molconn-Z [197]
(developed by eduSoft, LC, Ashland, VA) is the capacity to
calculate more than 300 structural descriptors, but these are
limited to a selection of structures from chemical databases.
Recently Tripos. Inc. began a distribution of VolSurfT M

[46], which was developed by Molecular Discovery Ltd.,
London, UK and has provided statistical methods (PLS and
PCA) for creating QSPR/QSAR models. Tripos, Inc. is
definitely a leader from the point of view of integration
using SPL (SYBYL programming language, level of shell
UNIX programming); however, these packages require
Silicon Graphics or Hewlett Packard workstations.

Pharmacopeia, Inc. founded the software subsidiary,
Accelrys, in 2001 by bringing together five software
specialist companies, namely, Molecular Simulations Inc.,
Synopsys Scientific Systems, Oxford Molecular, Genetics
Computer Group (GCG), and Synomics Ltd. However, such
merging does not necessarily result in a maximum
synergetic effect and the integration of inherited packages
(solutions) has not been easily resolved. Some of the
product lines support COM integration. The most integrated
package for QSPR tasks is Cerius2 [47], but it works only
on SGI workstations. Accelrys Discovery StudioTM [48]
platform technology, which includes support for VBA
(Visual Basic for Application) was launched in August
2001, together with DS MedChem Explorer [48, 49].

CambrigeSoft has developed the ChemSAR [50] COM
plug-in for their Chem3D molecular modeling module as
part of the ChemOffice package. Although the COM
integration of parts is very good, the add-in does not provide
optimal abilities for QSPR.

Several QSPR/QSAR packages were developed in the
academic environment. ADAPT [51] (Automated Data
Analysis and Pattern Recognition Toolkit), from
Pennsylvania State University, is a collection of FORTRAN
modules and provides facilities for molecular descriptor
calculation and analysis using multivariate statistics, pattern
recognition, and neural network methods. ADAPT can
calculate topological,  geometrical,  electronic,
physicochemical, and hybrid descriptors. Statistical
approaches supported include multiple linear regression,
clustering, discriminate analysis and neural networks.

CODESSA PRO [52] (COmprehensive DEscriptors for
Structural and Statistical Analysis PROfessional) was
developed in Center for Heterocyclic Chemistry, University
of Florida, U.S.A., and the Institute of Chemical Physics,
University of Tartu, Estonia. CODESSA PRO is a
comprehensive program for developing QSPR/QSAR, which
integrates all of the necessary mathematical and
computational tools needed to calculate a large variety of
constitutional, topological, geometrical, electrostatic and
charge-related, quantum-chemical and thermodynamical
descriptors (> 19,000, 116 classes), which can be used to
develop multiple linear and non-linear models, to interpret
the developed models, and to predict the properties for
compounds previously unknown or unavailable, and to test
the model extensively. Our previous MS Windows TM based
version of CODESSA (incompatible by code) was released
in 1995 [53] and ported for UNIX environment by
Semichem, Inc. [54]. An overview of applications with this
software is available [35].

A design tool with a focus on analyzing QSARs,
TsarTM, distributed by Accelrys [55], has been widely used
throughout drug discovery, from initial compound selection
for primary screening to reagent selection and creation of
focused libraries for lead optimization.

The Dragon software developed by R. Todeschini and
coworkers [56] allows the calculation of approximately 1500
molecular descriptors, including the topological indices,
WHIM and charge descriptors.

A package entitled QuaSAR and distributed by Chemical
Computing Group Inc. [57] is also suitable for the
calculation of various molecular descriptors and for the
subsequent development of QSAR equations.

The following table (Table 2) depicts status quo of
software in the QSPR/QSAR area. Only packages with the
ability to calculate theoretical descriptors, develop or
validate models were included into Table 2. The extensive
range of packages providing only molecular modeling is
excluded.

IV. MULTIDIMENSIONAL QSPR/QSAR

We can discuss the multidimensionality of QSPR/QSAR
from various points of view. Two of them, and in our
opinion the most relevant, are: (i) multidimensional
QSPR/QSAR models (2D-, 3D-, and recently 4D-
QSPR/QSAR), and (ii) the multivariate statistical analysis
of specific variables of the different phenomenon.
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Table 2. Software Status Quo in the QSPR/QSAR Area, where MM – Molecular Modeling, DC – Descriptors Calculator, SA –
Statistical Analysis, and MV – Model Validation

# Product name Distributed by Platform Applicability Comments

COMMERCIAL

1 TSAR Accelrys
Windows
NT/2000

MM: yes
DC: yes
SA: yes
MV: no data

Includes two components: Tsar (for displaying properties and structures,
performing statistical analyses and predicting properties from structures)
and Tsar3D (for 2D to 3D conversion, similarity calculation and quantum
mechanics) [190]

2
Ins igh t  I I :
QSPR and
Synthia

Accelrys SGI/IRIX

MM: yes
DC: yes
SA: yes
MV: no data

Incorporates empirical correlation methods to predict different properties
(thermophysical, mechanical, transport, electrical, optical, and magnetic)
for polymer systems based on their chemical structure. The difference
between these two programs is: QSPR relies on statistical interpolation from
observed structure/property relationships using group contribution methods
and Synthia uses graph theoretic techniques. [191]

3 Cerius2 4.6 Accelrys SGI/IRIX

MM: yes
DC: yes
SA: yes
MV: yes

Due to different modules, which are incorporated, allows generating of
different descriptors covering diverse geometrical, topological and
molecular information (C2.QSAR+, C2.Descriptor+), employs different
statistical techniques (C2.QSAR+) including genetic algorithms (C2.GA).
Some whole-molecule descriptors can be calculated directly from the
Markush expression (C2.LibEngine). [192]

4
Alchemy 2000
(SciQSAR,
SciPolymer,
SciProtein)

Tripos, Inc. Windows
MM: yes
DC: yes
SA: yes
MV: no data

Three application modules, SciQSAR, SciPolymer, SciProtein, available as
options, allow to use Alchemy 2000 for creating structure-activity or
property relationships, includes the calculation of some descriptors,
regression analyzer, calculation of 31 properties for a homopolymer or
alternating co-polymer based on the monomer units using topological
variables, and prediction of secondary structure (based on a defined set of
training proteins) or effects on secondary structure changes in situ mutation
experiments.[193]

5

SYBYL
(QSAR with
CoMFA,
Advanced
CoMFA,
HQSAR,
VOLSURF)

Tripos, Inc.
SGI/IRIX
and
HP/HP-UX

MM: yes
DC: yes
SA: yes
MV: yes

Uses CoMFA (Comparative Molecular Field Analysis), CoMSIA
(Comparative Molecular Shape Indices Analysis) to build into QSAR a set
of physicochemical descriptors – structural, conformational, geometric,
electronic, and thermo-dynamic, including Eigenvalue (EVA) descriptors.
Additionally, VOLSURF predicts a set of adsorption, distribution,
metabolism and excretion (ADME) properties using pre-calculated models.
Statistical part includes molecular field generation tools: Principal
Component Analysis (PCA or Factor Analysis), Partial Least Squares (PLS)
and Soft Independent Modeling of Class Analogy (SIMCA) and non-linear
analysis tools: hierarchical clustering. [194]

6 ChemOffice
Ultra 2002

CambridgeSoft Windows

MM: yes
DC: yes
SA: yes
MV: no data

Includes ChemSAR for Excel, which allows to compute some of descriptors,
such as steric, electronic, and thermodynamic and to calculate the following
statistical properties: descriptive statistics (mean, minimum, maximum,
range, count, sum, standard deviation and median), correlation matrix and
rune plot. [195]

7
Molecular
Analysis Pro ChemSW Windows

MM: no
DC: yes
SA: yes
MV: no data

Calculates about 50 molecular descriptors, includes statistical tools: multiple
linear regression (maximum 30 variables), PCA (maximum 30 variables)
and PLS (limited by memory), and data base capabilities (up to 3000
molecules) [196]

8 CODESSA Semichem Windows /
UNIX

MM: no
DC: yes
SA: yes
MV: yes

Computes over 500 descriptors (topological, geometric, constitutional,
thermodynamic, electrostatic, and quantum-mechanical), and includes
statistical tools: 5 regression analyses, heuristic, and 4 multivariate analysis.
Full integration with AMPAC and GAUSSIAN98 [54]

9 CODESSA
PRO8

C e n t e r  f o r
Heterocyclic
Chemistry,
University of
Florida, U.S.A.

Windows
NT/2000/XP

MM: no
DC: yes
SA: yes
MV: yes

Integrates all necessary mathematical and computational tools to calculate a
large variety of molecular descriptors: constitutional, 3D geometrical,
electronic, topological, quantum-chemical, and thermodynamic (> 19,000).
Performs a one-dimensional statistical analysis of the normal distribution of
the initial data, study of the intercorrelation of the different properties or
different descriptors, as well as implement the principal component analysis
of descriptors and properties. Property values can be predicted by the
multiparameter correlation equations obtained from the previously
mentioned methods. [52]

ACADEMIC

10 ADAPT

Jurs Research
Group,  The
Pennsylvania
State University

UNIX

MM: yes
DC: yes
SA: yes
MV: yes

Calculates four general classes of structural descriptors: topological,
geometrical, electronic, physicochemical, and hybrid descriptors. For model
development, uses multiple linear regression analysis, computational neural
network and pattern recognition methods. [51]

11 MOLCONN-Z
3.50

eduSoft, LC
SGI and PC
(x86/DOS)

MM: no data
DC: yes
SA: yes
MV: no data

Program for generation of molecular descriptors (>300), including new
hydrogen bonding descriptors based on the E-State and Hydrogen E-State
indices, which characterizes atoms and groups which act as hydrogen bond
donors. Statistical analysis tools includes: multiple linear regression,
nonlinear regression, PLS (partial least squares), discriminant analysis,
pattern recognition, cluster analysis and PCA (principal component
analysis). [197]
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Several types of QSAR/QSPR multidimensional models
have been considered. The multidimensionality of the
models is due to the 3D-geometry of the molecules that are
analyzed. 2D-QSARs are developed usually from topological
representation of molecules, and encode limited information
on binding specificity [58]. 3D-QSAR models use the three-
dimensional representation of molecules and establish a
quantitative relationship between a series of 3D structures of
molecules and their biological activity. 3D-QSAR provides
valuable insights into why changing a substituent on a
molecule might change its biological activity, and plays an
important role in the design of better drugs.

Comparative molecular field analysis, CoMFA, was one
of the first, and is presently the most popular of the 3D-
QSAR schemes. Quantitative structure-activity relationship
(QSAR) models and CoMFA analyses assume that most
intermolecular interactions are non-covalent and shape-
dependent [59]. Relatively recently a 4D-QSAR formalism
has been developed to deal with the problems encountered in
constructing a 3D-QSAR: (i) identification of the active
conformations/molecular shapes of flexible compounds in
the training set, (ii) specification of the molecular alignment
(the basis for comparing molecules), and (iii) the so called
interaction pharmacophore (different parts of each molecule
can be expected to have different types of interactions with
sites on a common receptor and/or in a common medium)
[60, 61]. Hopfinger et al. [60] consider the fourth dimension
of 4D-QSAR analysis as the “dimension” of ensemble
sampling.

During past five years, 3D-QSPR and 4D-QSPR
methodologies have also been applied to the
physicochemical properties in the framework of the
quantitative structure-property relationship modeling. Puri et
al. [62, 63] have derived 3D-QSPRs models using CoMFA
to correlate sublimation and vaporization enthalpies of a
representative set of polychlorinated biphenyls (PCBs) with
their CoMFA-calculated physicochemical properties.

Estrada et al. studied the complexation of alpha- and
beta-cyclodextrin with mono- and 1,4-di-substituted
benzenes using combinations of 2D- and 3D-connectivity
with quantum chemical molecular descriptors [64]. Together
with Molina, Estrada also demonstrated that topographic
(3D) molecular connectivity indices have an important role
in modeling partition coefficients (log P) and antibacterial
activity of 2-furylethylenes [65].

3D-QSPR formalism has been applied by Burke et al. to
an analog series of pyridobenzodiazepinone inhibitors of
muscarinic 2 and 3 receptors. Using a repetitive partial least
squares (PLS) analysis, they obtained models that are
governed by the identification of the properties of a
lipophilic binding site and specific nonallowed steric
receptor sites [66].

Hopfinger et al. partitioned molecular features into four
different tensors: (i) intrinsic molecular shape, (ii) molecular
field, (iii) nonshape/field features, and (iv) an experimental
tensor. They realized a 3D-QSPR model by constructing the
optimum transformation tensor, which was identified using
PLS regression [61].

Duca et al., in a study of the calcite growth inhibitor,
identified a pharmacophore consisting of six interaction sites
between the inhibitors and the surface, and represented by a
4D-QSPR model. They concluded that three of the sites
dominate the model: (i) a region occupied by the binding
surface, (ii) a site which involve an oxygen of a PO3H2
group hydrogen bonding to the surface, and (iii) a nonpolar
region of space favorable to inhibition potency [67].

Klein and Hopfinger obtained a significant model for in
vivo antiarrhythmic activity using 4D-QSAR method in
which log P and specific grid cell occupancy (spatial)
descriptors are the main activity correlates. Considering as
properties the changes in a membrane transition temperature
and the ability of the analogs to displace adsorbed Ca2+ ions
from phosphatidylserine monolayers, they also developed
4D-QSPR models [68].

The large variety of variables which are characteristic of
or largely influence multiple phenomenons (e.g. the topic of
solubility involves at least three very important variables,
the nature of the solvent, the nature of the solute, and the
temperature), also confers multidimensionality to the
QSPR/QSAR studies.

The advantage of using multivariate statistical analysis
(data reduction methods) to provide insight into how these
variables (properties) interrelate quantitatively has been
confirmed by many studies.

A common method is principal component analysis
(PCA) of a matrix formed by assembling related properties
for a large set of structures. PCA has been used frequently in
QSAR studies, to extract uncorrelated and useful
information from independent variables. The PCs (principal
components) are useful: (i) as independent variables in
principal component regressions, (ii) as axes to define n-
dimensional spaces for analogues selection, (iii) to predict
properties of compounds with similar structure [69, 70], (iv)
to classify diverse sets of toxic compounds into subsets by
MOA (mode of action) [70, 71]. In the case of a large
homogeneous set of descriptors, PLS is able to extract
significant formal correlation factors [59].

The application of PCA for data reduction has provided
insight into (a) the concept of solvent polarity scales [72,
73], and should also provide insight to (b) the solubility of
compounds in various solvents, (c) GC and LC retention
times for various stationary phases, and (d) relationships
between different toxic endpoints as will now be briefly
discussed.

The literature contains more than a hundred quantitative
solvent polarity scales, proposed on the basis of diverse
properties (reaction rates, solvatochromic effects, entropies
etc.). To provide a more precise definition, we formed a
matrix of 40 scales x 40 solvents. QSPR were established
for each of these 40 scales to fill in the gaps in the matrix
[72, 73]. The principal component analysis for this matrix
extracted three PCs explaining 75% of the variance. The
scores and loadings obtained give considerable insight into
the relationship between different manifestations of solvent
polarity.
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The QSPR analysis of series of solvents and solutes and
the development of various approaches to obtain QSPR
models for solubility is described in Section V. To
understand how solubility varies with molecular structure
from solvent to solvent or between different solute/solvent
pairs is being approached by principal component analysis
(PCA) on a solubility matrix of solute-solvent pairs. The
scores of the most important principal components
illuminate solubility as a function of the structure of solute.
The loadings of the most important principal components
similarly illuminate solubility as a function of the solvent.

To systematize gas chromatographic (GC) retention times
using chemical structural information requires clarification of
structural dependencies between the eluted compound and
various stationary phases. Several groups have estimated
retention indices using various descriptors: topological [74-
76], charged partial surface area (CPSA) [77], and quantum-
chemical [78, 79] descriptors for a large variety of
compounds: substituted pyrazines [80], polycyclic aromatics
[81], stimulants and narcotics [82], and anabolic steroids
[83]. A mixed set of topological and quantum-chemical
descriptors modeled 152 diverse structures [78] and 178
methyl-branched hydrocarbons [84]. The general
phenomenon of gas-solid absorption could be studied by
combining QSPRs and subsequent PCAs of a matrix of
retention times of a diverse set of compounds using a range
of solid phases in GC [85], all measurements being made
under the same experimental conditions.

A great many different measures of toxicity have been
used depending on species, concentration, mode of action,
and duration. The number of compounds, for which at least
one measure of toxicity has been obtained, ranges up to 6
figures. A general approach to toxicity must relate the nature
of toxicological indices and the structural variation over a
wide range of chemical compounds. Various measures of
toxicity for different endpoints can be analyzed
independently in terms of simple QSAR models combined
with pre-selection of descriptors. This should be followed by
the data analysis of a matrix of toxicities of various
endpoints with data reduction through PCA, resulting in
interrelationship between various measures of toxicity and
various endpoints.

In conclusion, there is an obvious interrelation between
multidimensional QSPR/QSAR models and multivariate
statistical analysis (PCA, PLS) of variables. The 2D-, 3D-,
and 4D-QSPR/QSAR models, built by using whole
molecule descriptors, can and should be used to fill data
matrix that will be later analyzed using multivariate
statistical methods to see how the specific variables for a
characteristic phenomenon are interrelated.

V. SOLUBILITY

Knowledge on the solubilities of the organic compounds
is important in several areas related to medicinal chemistry
and also to the properties/activities discussed in other
sections of this overview. In particular, correct estimates of
solubility are required for understanding the environmental
fate (toxic, carcinogenic and mutagenic) of possible

pollutants and how easily compounds enter into the
environment (soil/sediment adsorption coefficients or soil
sorption coefficients) and thereafter into the living
organisms. Solubility is also crucial in determining the
bioavailability and thus the effectiveness and bio-degradation
of pharmaceuticals. The suitability of gaseous anesthetics,
blood substitutes, oxygen carriers, etc. is critically linked to
solubility. Consequently, the correct prediction of solubility
and understanding the factors determining solute-solvent
interactions are vital from point of view of medicinal
chemistry.

Solubility can be defined in two major ways: (i) the
solubility of liquids and solids and (ii) the solubility of
gases and vapors. The first of these, S, is defined as the
concentration (in units of moles or weight of solute per
weight or volume of solution) of solute in the solvent phase,
at equilibrium with a pure solute phase. The second
solubility, L , also known as the Ostwald solubility
coefficient, is defined as the ratio of the concentration of a
compound in a solution and in the gas phase at equilibrium.
Another commonly used parameter, approximately equal to
L-1, is Henry’s Law constant H, which is essentially an air-
solvent partition coefficient. Aqueous solubility has been the
most studied because of its practical applications (see our
previous review for QSPR treatments of aqueous solubility
[33]). Most often, the solubility is studied in series where
the solvent is kept constant and the solutes are varied (Table
3.1). In several studies, the solvent is varied and the solute
is kept constant within the series (Table 3.2).

A variety of methods has been used in the QSPR
modeling of solubility, of which the multi-linear regression
(MLR) approach has been the most popular. The past decade
has also boosted the application of various neural network
(NN) techniques. Also, various descriptor selection methods
have been developed, including stepwise forward selection
(SFS) procedures, genetic algorithms (GA) and simulated
annealing (SA) routines in conjunction with MLR and NN.
Based on the descriptors used in the models, Yalkowsky and
Banerjee classified the different approaches for the prediction
of (aqueous) solubility into three categories: (i) correlations
with experimentally determined physicochemical quantities;
(ii) correlations based on group contributions; (iii)
correlations with parameters calculated solely from the
molecular structure [86].

Into the first category, one can also add correlations
using descriptors based on empirical measurements. The
early development of this type of empirical descriptors for
the MLR analysis of solubility (solute-solvent interactions)
was carried out by Katritzky et al. [87], Koppel and Palm
[88], Kamlet and Taft [89], Krygowsky and Fawcett [90],
Sawin et al. [91], Mayer [92], Dougherty [93], etc. The
biggest success story in the first category is the linear
solvation energy relationships (LSER) methodology
originally developed by Kamlet and Taft [94, 95] and further
elaborated and applied by Abraham and coworkers [96]. The
LSER MLR model includes several characteristics to
describe solvent’s/solute’s polarizability, dipolarity, volume,
hydrogen bond acidity and hydrogen bond basicity. The
strength of this approach relies in combining those
characteristics into one model, forming thus a solid basis to
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Table 3.1. Solubility Data Series with Constant Solvent, Series of Solutes Studied, Number of Point in the Series, Descriptors
Involved and Methods Used

# Solvent (exp. value) Solutes a N b Descriptors c Method d Reference

1 Water (S) PAH 31 Log Pow MLR Yalkowsky et al. [198]

2 Water (S) HB 26 Log Pow MLR Yalkowsky et al. [199]

3 Water (S) PCB 22 MP, MSA, GD MLR Dunnivant et al. [200]

4 Water (S) Drugs 150 Log Pow, MP MLR Ran and Yalkowsky [201]

5 Water (S) AAH 70 LSER MLR Kamlet et al. [202]

6 N-methylpyrrolidine (L) Diverse set 60 LSER MLR Abraham et al. [203]

7 N,N-dimethylformamide (L) Diverse set 53 LSER MLR Abraham et al. [203]

8 N,N-dimethylacetamide (L) Diverse set 27 LSER MLR Abraham et al. [203]

9 Methylene iodide (L) Diverse set 37 LSER MLR Abraham et al. [204]

10 Water (L) Diverse set 408 LSER MLR Abraham et al. [205]

11 Propan-1-ol (L) Diverse set 77 LSER MLR Abraham et al. [206]

12 Butan-1-ol (L) Diverse set 92 LSER MLR Abraham et al. [207]

13 Pentan-1-ol (L) Diverse set 62 LSER MLR Abraham et al. [207]

14 Hexan-1-ol (L) Diverse set 46 LSER MLR Abraham et al. [207]

15 Heptan-1-ol (L) Diverse set 38 LSER MLR Abraham et al. [207]

16 Decan-1-ol (L) Diverse set 45 LSER MLR Abraham et al. [207]

17 Water (L) Diverse set 292 Fragments GC Hine and Mookerjee [208]

18 Water (L) Diverse set 209 Fragments GC Cabani et al. [209]

19 Water (L) Diverse set 180 Fragments,Td, Ed, Id GC, MLR Nirmalakhandan and Speece [210]

20 Water (S) Diverse set 497 Fragments GC Suzuki [211]

21 Water (S) Diverse set 483 Fragments GC Klopman et al. [212]

23 Water (S) PCB 50 UNIFAC GC Li et al. [213]

24 Water (S) Diverse set 970 AQUAFAC GC Myrdal et al. [214]

25 Water (S) Diverse set 68 UNIFAC GC Kan and Tomson [215]

26 Water (S) Diverse set 1168 Fragments GC Klopman and Zhu [97]

27 Water (S) Aliphatic comp. 158 MSA MLR Amidon et al. [216]

28 Water (S) Diverse set 200 TD, CD MLR Nirmalakhandan and Speece [217]

29 Water (S) HB, PAH, PCB 71 TD MLR Patil [218]

30 Water (S) Diverse set 331 TD, CD, ED, QC NN Bodor et al. [219]

31 Water (S) Diverse set 331 TD MLR Bodor and Huang [220]

32 Water (L-1) Diverse set 63 TD, GD, ED* MLR Russell et al. [221]

discuss solute-solvent interactions and rank each of them for
every solute-solvent pair. The LSER correlation equation can
be interpreted term-by-term using well-established chemical
principles. Unfortunately, LSER cannot be used to make a
priori predictions because the descriptors have their origin in
experimental measurements, making their availability
difficult while working on diverse compounds within large
databases. Also, the resulting correlations do not relate the
property to the molecular structural information. It is thus

difficult to elucidate how molecular structure affects the
observed property. At the same time, the LSER models
usually have excellent predictive quality. In the Table 3.1,
first sixteen rows list the data sets studied using
experimental descriptors (#1-4), with most applications
using LSER methodology (#5-16). For the data series of
constant solute (Table 3.2) first eight rows list the
applications of the LSER method.
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(Table 3.1). contd....

# Solvent (exp. value) Solutes a N b Descriptors c Method d Reference

33 Water (S) Pesticides, insecticides 106 TD MLR Patil [222]

34 Water (S) Diverse set 238 TD, GD, ED* MLR Nelson and Jurs [223]

35 Water (S) Diverse set 140 TD, GD, ED* NN(GA, SA) Sutter and Jurs [224]

36 Water (L) HC 95 TD, CD MLR (SFS) Katritzky et al. [98]

37 Water (L) Diverse set 405 TD, GD, ED*, QD MLR (SFS) Katritzky et al. [98]

38 Water (S) HC and HHC 222 GD, TD, CD, MLR (SFS) Huibers and Katritzky [99]

39 Water (S) Diverse set 411 TD, GD, ED*, QD MLR (SFS) Katritzky et al. [100]

40 Water (S) Drugs 211 TD NN Huuskonen et al. [225]

41 Water (S) Diverse set 332 TD, GD, ED* MLR, NN Mitchell and Jurs [226]

42 Water (S) PCB 136 WHIM MLR Gramatica et al. [166]

43 Water (L) Diverse set 423 TLSER MLR Famini et al. [227]

44 Methanol (L) Diverse set 87 TD, GD, ED*, QD MLR (SFS) Katritzky et al. [101]

45 Ethanol (L) Diverse set 61 TD, GD, ED*, QD MLR (SFS) Katritzky et al. [101]

a – PAH – polycyclic aromatic hydrocarbons; PCB – polychlorinated biphenyls; HB – Halogenated benzenes; AAH – aliphatic and aromatic hydrocarbons; HC –
hydrocarbons; HHC – halogenated hydrocarbons.
b – number of compounds analyzed in the article.
c – MSA – molecular surface area; TD – topological descriptors; MP – melting point;  ED – electronic descriptors (* – including charged partial surface area descriptors); ID
– indicator descriptors; GD – geometrical descriptors.
d – GC – group contribution; for other abbreviations see text.

Table 3.2. Data Series with Constant Solute, Series of Solvent Studied, Number of Point in the Series, Descriptors Involved and
Methods Useda

# Solute (exp. value) Solvents N Descriptors Method Reference

1 Trans-stilbene (S) Diverse set 17 LSER MLR Abraham et al. [228]

2 Ferrocene (S) Diverse set 18 LSER MLR Abraham et al. [229]

3 Fullerene C60 (S) Diverse set 20 LSER MLR Abraham et al. [230]

4 Diuron (S) Diverse set 19 LSER MLR Green et al. [231]

5 Monuron (S) Diverse set 21 LSER MLR Green et al. [231]

6 Anthracene Diverse set 29 LSER MLR Acree and Abraham [232]

7 Phenanthrene Diverse set 23 LSER MLR Acree and Abraham [232]

8 Hexachlorobenzene Diverse set 20 LSER MLR Acree and Abraham [232]

10 Fullerene (S) Diverse set 75 TD, CD MLR Sivaraman et al. [233]

11 Fullerene C60 (S) Diverse set 96 TD,ED*,GE MLR, NN Danauskas and Jurs [234]
a – see notes at the end of Table 3.1

In the second category, group contribution methods have
also gained much attention in prediction of solubility.
However, this approach gives less understanding of the
physical nature of the relationship between the molecular
structure and solubility process itself. Also, the application
of the method to the prediction of solubilities for
compounds containing structural functionality not included
in the original set is not justified. Recently, group

contribution methods were evaluated for their ability to
predict water solubility [97]. Examples of the application of
group contribution methods to the study of solubility are
given in Table 3.1, rows 17 to 26.

The third category comprises correlations with parameters
calculated solely from the molecular structure: constitutional
descriptors (CD), topological descriptors (TD), geometrical
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descriptors (GD), electrostatic (ED) or charge distribution
related descriptors and quantum chemical descriptors (QD)
[31]. These descriptors explicitly involve structural
properties of the compounds, and more importantly, they
can be calculated for any structure. In Table 3.1, rows 27-45
and Table 3.2 rows 9, 10 show some examples of QSPR
analysis of solubility with structure-based descriptors.
Topological descriptors are the most used, followed by
electrostatic (involving charge distribution) descriptors.
Recent rapid enhancements in computers and semi-empirical
quantum chemical programs have encouraged the application
of various quantum chemical descriptors in QSPR analysis
[34]. Along with conventional MLR, NN have been also
applied in the analysis of solubility (Table 3.1: #34, #39,
and #40). A rapidly growing number and variety of
descriptors (usually several hundreds) makes crucial the
selection of the descriptors for the final solubility’s models.
This has lead to the application of techniques for efficient
descriptor selection, with examples given with #35-39, 44,
and 45 in Table 3.1.

Our own work in the application of structure-based whole
molecule descriptors in the prediction of the solubilities of
gases and vapors on a data set of 95 alkanes, cycloalkanes,
alkylarenes, and alkynes, has resulted in an excellent
predictive equation with two parameters (Table 3.1: #36)
[98]. Based on this model, we concluded that the solubility
of gases and vapors depends on effective mass distribution
and on the degree of branching of the hydrocarbon molecule.
Those characteristics reflect the effective dispersion and
cavity formation effects for the solvation of non-polar
solutes in water. For a second set of 405 diverse organic
compounds, a successful five-parameter correlation equation
was obtained (Table 3.1: #37) [98]. The descriptors from the
equation #37 account for the dispersion energy of polar
solutes in solution, the electrostatic part of the solute-
solvent interaction and hydrogen-bonding interactions in
liquids. In subsequent studies, the solubility of liquids and
soils was described by a three-parameter equation developed
from a set of 96 hydrocarbons and 126 halogenated
hydrocarbons (excluding compounds capable of forming
hydrogen bonds) (Table 3.1: #38) [99]. The key descriptor in
equation #38 was the molecular volume, employed together
with additional topological and constitutional descriptors.
The resulting QSPR equation has good prediction as
compared with the estimated average experimental error. We
also correlated the aqueous solubilities of 411 diverse
organic compounds [100] using a six-parameter equation
(Table 3.1: #39). The above described approach has thus
showed a significant advantage of structural whole molecule
descriptors in describing the electrostatic interactions, the
cavity-size effects (dispersion and cavity formation), shape of
the molecule and specific solute-solvent interactions. These
are the major determining factors for the solute-solvent
interactions and, hence, aqueous solubility of compounds.

The data in Table 3.1 demonstrate that the LSER method
has been extensively applied to study of solubilities in other
solvents and those studies of series with constant solute
have utilized almost exclusively LSER methods (Table 3.2).
The structure-based whole molecule descriptors have received
little attention in the analysis of solubility in solvents other
than water and in data series with constant solute. Recently,

we started to fill this gap and analyzed solubilities in
methanol and in ethanol (Table 3.1: #44, #45) [101]. The
structure-based whole molecule descriptors in QSPR models
for both solvents led to the conclusion that descriptors cover
solute-solvent interactions like polarizability, dipole-dipole
interactions, hydrogen bonding, and lipophilicity. Here the
structure-based whole molecule descriptors showed great
utility, and are now being applied to other series of solvents.
The same also applies to single solute data series as
indicated in Table 3.2.

The LSER methodology has been combined with
quantum chemical calculations and found new power in
theoretical linear solvation energy relationship (TLSER) by
Famini et al. [102]. In TLSER, the experimentally derived
solvatochromic parameters were substituted by
semiempirical electronic indices such as partial charges on
certain atoms, HOMO and LUMO energies, etc. This
methodology was also applied to the analysis of solubilities
in water (Table 3.1: #43).

VI. BIOAVAILABILITY

The definition of bioavailability depends on the field of
study. These differences in definition reflect the importance
of chemical and biological processes in the particular field of
study, as well as the endpoints commonly used therein. The
pharmacological bioavailability is the most intensively
studied in the QSAR/QSPR literature. It estimates the
relative fraction of the orally administered dose that is
absorbed into the systemic circulation when compared to the
data measured for a solution, suspension, or intravenous
dosage form [103]. This definition focuses on the processes
by which the active ingredients or moieties are released from
an oral dosage form and move to the site of action.

The pharmacological bioavailability reflects not only the
characteristics of a chemical and its environmental
specification, but also the behavior and physiology of the
organism. In addition, bioavailability studies also provide
useful pharmacokinetic information related to the
distribution, elimination, the effects of nutrients on the
absorption of the drug, and dose proportionality. The
bioavailability data may also provide indirect information
about the properties of a drug prior to entry into the
systemic circulation, such as its permeability and the
influence of enzymes and/or transporters.

Absorption has become a significant problem since the
advent of high throughput screening, which has made it
technically feasible to screen hundreds of thousands of
compounds across many in vitro assays. Numerous
compounds, which have now become available for physical-
chemical screening, exist only in very small quantities
and/or non-traditional forms. As a result, these compounds
are no longer solubilized in aqueous media under
thermodynamic equilibrium conditions. Promising new drug
candidates often fail because of inadequate bioavailability.
Oral bioavailability, the most important type of
bioavailability for the contemporary biochemical industry,
involves several factors such as solubility, gastrointestinal
absorption, chemical stability in the gastrointestinal tract
and metabolism.
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The discovery process based on high throughput
screening is highly logical. However, the in vitro nature of
the screening techniques provides no bias towards properties
with favorable oral activity. Obtaining oral activity is
usually more time-consuming than optimizing the in vitro
activity. Therefore, methods for deducing bioavailability
from molecular structure are highly valuable for both high
throughput screening and for rational drug design. Another
reason for developing the computational prediction of
bioavailability is the lack of reliable experimental approaches
to permeation measurements.

A recent review by Lipinski et al. [104] discusses poor
solubility and permeability as causes of low bioavailability.
Other factors such as intestinal wall active transporters and
intestinal wall metabolic events have often been ignored,
though they are known to be important in the case of
peptidic-like compounds. A set of easily calculable
parameters, probably related to absorption and permeability,
needs to be identified to set up an absorption-permeability
alert procedure as a guide for medicinal chemists.

The first obvious choice of such properties is molecular
weight (formula weight in the case of a salt) since poor
intestinal and blood brain barrier permeability, as well as
permeation time in lipid bi-layers, is related to increasing
molecular weight. Another important physicochemical
property related to absorption is lipophilicity, which is
usually expressed as a ratio of octanol solubility to aqueous
solubility (log P). Different algorithms based on fragmental
contributions can be used to calculate log P. Here a suitable
tradeoff must be chosen between the use of large fragments
that increase the accuracy of prediction but also increase the
possibility of missing fragments and the use of smaller more
common fragments that result on lower prediction accuracy.

Permeability across a membrane bilayer is reduced by an
excessive number of hydrogen bond donor groups. Hydrogen
donor ability can be expressed in terms of the
solvatochromic parameter α  of a donor group. Various
researchers have compiled experimental values of the α
parameter. However, it has been found that a simple sum of
the number of NH and OH bonds can also perform well.
Permeability across a membrane bi-layer also decreases with
a large number of hydrogen bond acceptors, which can be
measured as the count of N and O atoms, though this gives
only a rough estimation of hydrogen acceptor ability.

The above considerations, together with the analysis of a
compound library with favorable physicochemical properties,
led to the formulation of the "rule of 5", so called because
the cutoff values for the respective parameters were close to 5
or a multiple of 5. The "rule of 5" provides a simple scheme
for the prediction of poor absorption or permeation based on
the following criteria: (i) More than 5 H-bond donors
(expressed as the sum of OHs and NHs); (ii) Molecular
weight is over 500; (iii) log P is over 5; (iv) More than 10
H-bond acceptors (expressed as the sum of Ns and Os).

The rule does not apply to compounds that are substrates
for biological transporters. It was found that certain
therapeutic classes lie outside the parameter cutoffs in the
rule. These classes include antibiotics and vitamins for

example, which suggests that they contain structural features
that allow them to act as substrates for naturally occurring
transporters. The “rule of 5” has proved very popular as a
rapid screen for compounds that are likely to be poorly
absorbed.

Currently, two major approaches are used for generating
leads in the pharmacological industry. The high throughput
screening approach is based on empirical screening for in
vitro activity. Alternatively, the rational drug design process
includes various techniques ranging from modification of a
known compound to the modeling of target binding process.
To analyze the relative importance of poor solubility or poor
permeability in the problem of poor oral absorption, the
trends in physicochemical properties of chemistry drug
spaces over time have been compared for two
pharmacological companies Merck (rational drug design) and
Pfizer (high throughput screening) [105].

Both approaches have led to increased molecular weight
for clinical candidates. However, while the lipophilicity is
unchanged in Merck drug candidates, it is increased in Pfizer
candidates, because the most reliable method to increase in
vitro potency is with an appropriately positioned lipophilic
functionality. By contrast, the H-bond acceptor trend,
unchanged in Pfizer candidates, is increased in Merck
probably because of the strong focus on peptido-mimetic
like structures in rational drug design that typically interact
through hydrogen bonding. The overall result is that as
target complexity increases, Merck-like rational drug design
leads to poorer permeability while Pfizer-like high
throughput screening leads to poorer solubility.

Various QSAR studies have been conducted to predict
various processes affecting oral bioavailability of structurally
diverse compounds. Thus, extensive work has been carried
out for the QSPR prediction of aqueous solubility (cf.
Section V). Several QSPR models estimate membrane
permeability, as an example, corneal permeability data have
been analyzed for quantitative relationships with
physicochemical properties [106]. Good parabolic
correlations were established between lipophilicity, as
expressed by the octanol-water partition coefficient, log P (or
the distribution coefficients, log D for ionizable
compounds), and the permeability in individual analyses of
compound classes such as adrenoceptor blockers and
steroids. However, the correlation was less when different
classes of compounds were analyzed together. Multiple
three-dimensional quantitative structure-activity relationship
(3D-QSAR) approaches were applied successfully to
predicting passive CACO-2 permeability for a series of 28
inhibitors of rhinovirus replication [107].

A quantitative structure-permeability relationship was
developed using Artificial Neural Network (ANN) modeling
to study penetration across a polydimethylsiloxane
membrane for a set of 254 compounds. The model
developed indicates that molecular shape and size, inter-
molecular interactions, hydrogen-bonding capacity, and
conformational stability of molecules can determine
permeability [108].

The prediction of overall oral bioavailability is a much
more difficult task due to the complexity of the many
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different factors involved. The first attempt to provide a
single equation for the approximate prediction of human oral
bioavailability was made by Yoshida et al. [109]. This
expressed bioavailability data as the percentage of an
administered dose of a parent compound reaching the
systemic circulation after oral administration. Compounds in
the training set were classified into four different classes
according to preset ranges representing degrees of useful
bioavailability. The modeling was performed using the
ORMUCS (ordered multicategorical classification method
using the simplex technique) method, especially designed
for use in QSAR work involving noncontinuous activity
data.

Physicochemical descriptors utilized in the model
include the values of log D (log distribution coefficient) at
the pH of the small intestine, which were calculated from
log P (n-octanol/water) and pKa values. Several QSAR
studies have reported this to be the most relevant measure of
lipophilicity with regard to oral absorption by passive
diffusion [109, 110, 111]. In addition, various structural
descriptors relating to readily hydrolyzable entities were
employed in order to describe the effects of metabolism. The
QSAR model developed using a training set of 232
compounds includes 3 lipophilicity descriptors and 15
structural descriptors. The bioavailabilities of 71 % of the
compounds were correctly classified and 97 % were correct
to within one class. The developed model, however, has the
following limitations. The model can fail for high molecular
weight compounds (>500) and those with strong hydrogen
bonding capacity, such as peptides and peptide-like
compounds, since these types of compounds were not
sufficiently represented in the training set. Also, the model
assumes only passive diffusion and neglects absorbtion
through other mechanisms.

The largest available human intestinal absorption data
set, consisting of data for 241 drugs, was collected by Zhao
et al. [110] who developed a QSAR model based on the
Abraham general solvation equation. Four out of the five
Abraham descriptors involved in the model were calculated
using a fragment based contribution scheme. These
descriptors include excess molar refraction,
dipolarity/polarizability, hydrogen bond acidity and basicity
and McGowan characteristic volume. Since the absorption
data originated from a variety of methods, it was necessary
to classify the data carefully and evaluate their quality before
starting the modeling. Data for dose-limited drugs, drugs
with dose-dependent absorption, and those metabolized in
the intestine before passing through the membrane were not
included in the modeling. An analysis of the remaining 169
drugs resulted in an equation having R2 = 0.74, s = 14 %
and F  = 78. The two dominant descriptors were the
hydrogen bond acidity and basicity.

Molecular size and hydrophobicity, which affect
intestinal absorption, have also been shown to be important
in transdermal penetration. QSPR relationships for the
prediction of percutaneous absorption, which may be
important in determining the bioavailability of a range of
topically applied exogeneous chemicals, have been reviewed
by Moss et al. [112]. Here the major problem appears to be
the lack of standardized methodology for the measurement of

percutaneous penetration. Compilation of data from different
measurement methodologies and experimental protocols has
caused inconsistencies in the data sets that were used for the
development of the QSPR/QSAR models. Therefore many
of the QSARs developed so far are inherently subject to
substantial systematic experimental error.

Early (pre-1990) attempts to develop QSPR models for
skin permeability are restricted to analysis of homologous or
closely related classes. A series of more general QSAR
studies, on both drug and non-drug compounds have been
performed after the publication of a large heterogeneous
database by Flynn [113]. However, the QSPR/QSAR
models for the prediction of percutaneous penetration need
improvement in at least two areas. First, the effect resulting
from the manner in which the formulation is applied to the
skin should be taken into account. Secondly, an extension of
QSPR/QSAR models to assess several distinct endpoints
(surface deposition, superficial skin penetration etc.) must be
considered. A further need is to standardize the experimental
protocol used to generate skin permeability data.

In conclusion, bioavailability and the factors affecting it
have mainly been modeled using experimentally measured or
calculated physicochemical properties and simple counts of
structural features. The QSPR/QSAR modeling of
bioavailability using large descriptor spaces involving
constitutional, topological, geometrical, electrostatic, and
quantum chemical descriptors is still a relatively unexplored
area.

VII. BIO AND NON-BIO DEGRADATION

The two most important forms of degradation that
determine the environmental fate of organic chemicals are
tropospheric degradation in air and biodegradation occurring
primarily in water and soil compartments. The tropospheric
degradation process is mainly the reaction of an organic
chemical with the hydroxyl radical whereas mixed
populations of environmental microorganisms carry out
biodegradation. Models for reliable estimation of lifetime
and degradability of organic chemicals are of critical
importance to their environmental risk assessment. In the
past, a large number of models have been published for
various degradation processes. They were usually developed
for small sets of chemicals and their predictive power was
low (below 70%). The development of new and better
qualitative and quantitative biodegradability models became
possible with the release of standardized and uniform
biodegradation databases such as BIODEG [114], UM-BBD
[115] and MITI [116].

First, we consider the tropospheric degradation. The rate
constants prediction of OH radical reaction is essential for
the assessment of the effects of anthropogenic halocarbons
on ozone formation, stratospheric ozone depletion, long-
range transport of chemicals, and global climate change. The
most widespread method for the calculation of OH radical
reaction rate constants is Atkinson's group contribution
method [117]. It is based on a limited number of different
reaction pathways and an additive fragment contribution
scheme that assumes additivity for the overall reaction rate
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constant. The validation of Atkinson's group contribution
method has shown that for about 90% of organic compounds
the calculated reaction rate constant is within a factor 2 of
the experimental reaction rate constants. However, it fails for
certain classes of compounds such as haloalkanes and
haloalkenes. The more advanced MOOH method is based on
nonlinear QSAR models where all descriptors are derived
from the calculated MO energies as well as the atomic and
MO coefficients [117]. An evaluation of MOOH has shown
that it generally has lower predictive accuracy than
Atkinson's method, but it can be useful for chemical classes
not included in the development of Atkinson's method and
for chemical classes for which Atkinson's method gives
unreliable estimates.

QSPR/QSAR models utilizing different kinds of
molecular descriptors (structural, topological, empirical and
WHIM descriptors) have been developed for reaction rate
constants with OH and also with NO3 radicals, which are the
most important reactive species in the troposphere at night
[118]. The application of the Genetic Algorithm Variable
Subset Selection (GA-VSS) strategy for the selection of the
best subset of descriptors out of 175 and a training set with
size 201, led to a 7-parameter model with R2 = 0.73 for the
reaction rate constant with OH radicals. Because of
difficulties in obtaining a satisfactory general model for the
reaction rate constant with NO3 radicals, models were
obtained separately for 58 aliphatic compounds (R2 = 0.84,
5 descriptors) and 16 aromatic compounds (R2 = 0.98, 3
descriptors). These results show that tropospheric
degradation rates can successfully be predicted by low
dimensional models based on whole molecule descriptors
and that the performance of such models is comparable with
the higher dimensional (~100) parameter Atkinson's model.
Another study, based on different molecular structure
descriptors, has been performed to model the atmospheric
persistence of POPs (persistent organic pollutants), toxic
compounds, which are considered an environmental risk to
humans and ecosystems [119]. Models were calculated for
the mean and maximum half-life estimates for 59
compounds. Atmospheric half-life is a common criterion
used to study persistence in the environment and tendency to
undergo long-range transport. Multiple linear regression
analysis with variable selection based on genetic algorithms
was applied with a set of about 170 molecular descriptors.
The best model for the logarithm of average half-life had 4
descriptors and R2 = 0.84. The most relevant descriptors
were 3D-WHIMs related to three-dimensional size and shape.
An analogous result with a similar predictive power (R2 =
0.83) was obtained for maximum half-life values.

Another large area of environmental degradation of
chemical compounds is based on biodegradation. Various
structure-based biodegradation estimation methods have been
compared in a recent review of Raymond et al. [120].
Biodegradation of organic chemicals in natural systems can
be classified as primary (structural transformation that alters
the molecular integrity), ultimate (conversion to inorganic
compounds or normal metabolic products) or acceptable
(degradation to the extent that undesirable characteristics are
ameliorated). QSAR/QSPR studies presented in the
literature are focused mainly on primary and ultimate
biodegradation. The biodegradability can be expressed in

various terms: half-lives, diverse biodegradation rates and
rate constants, theoretical and biological oxygen demand etc.
The most commonly correlated property found in the
literature is the primary or ultimate aerobic degradation.
Models exist for the prediction of the propensity of a
chemical to biodegrade (readily biodegrades or persists) or
some quantitative measure of biodegradability such as rate
constants.

Most of the published quantitative structure-
biodegradability relationships (QSBRs) were developed for a
limited set of homologous chemicals. Heterologous models
able to predict biodegradability for a diverse set of chemical
structures are scarce. Modeling biodegradation is
complicated by a multitude of factors including temperature,
population of microorganisms, acessibility of metabolic
cofactors (O2, nutrients), cellular transport properties etc.
Various group contribution methods have proved to be the
most reliable. The group contribution methods of Boethling
et al. [121] were developed using a training set of 295
compounds and a list of 36 substructures. The models are
used to predict the probability of biodegradation ranging
from 0(none) to 1(certain) and achieved an accuracy of 89.5
% for the linear and 93.2 % for the nonlinear regression.

It has been shown that molecular connectivity indices
describing the electronic and steric features of organic
molecules complement the group descriptors and provide an
effective way to minimize the number of variables. In
particular, a general QSBR with n = 124 and R2 = 0.73 was
developed for the prediction of biodegradation rate by
acclimated activated sludge and involved 12 variables: 3
molecular connectivity indices, 2 "dummy" variables
indicating the presence or absence of certain structural
features and just 7 group variables [122].

From the above discussion, it is possible to conclude
that: (1) tropospheric degradation rate can be predicted by
group contribution method as well as by models involving
only whole molecule descriptors; (2) to model the rate of
biodegradation, various group contribution approaches seem
to be the most advantageous. However, inclusion of the
whole molecule descriptors can be useful and significantly
reduce the number of fragment descriptors in the model.

VIII. QSAR ON TOXICITY

The rapid development of QSAR analysis for the
prediction of toxicity was initiated by Hansch and Fujita
[13], who demonstrated that relationships exist between
biological activities and the hydrophobic, electronic and
steric properties of compounds. The classical Hansch type
QSAR models have been particularly successful for data
series with toxic nonspecific interaction (for instance non-
polar and polar narcosis). However, when dealing with toxic
specific interactions (reactive chemicals), Hansch type QSAR
models often gave moderate prediction of the toxicity of
compounds. This is particularly the case for the
carcinogenicity and mutagenicity. Therefore the maximum
information available on structure of the compound is
needed and the purely structure-based whole molecule
descriptors can be a source for this kind of information.
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The real challenge in the prediction of toxicity is the
development of QSAR for big, diverse and complicated data
sets. Inability to obtain such models has lead to various
classification techniques to reduce the data sets via grouping
them according to some rules. The most common
classification is based on our experimental knowledge into
the modes of action (MOA). The classification based on
MOA was introduced with the concept of “baseline toxicity”
by Könemann and coworkers [123] while studying
relationship between toxicity and the octanol-water partition
coefficient for inert narcotic pollutants. According to this
concept, the activity of chemicals with baseline toxicities
depends solely on the hydrophobicity of the compounds and
they are counted as non-polar narcosis actors. Other
compounds show higher toxic effects and consequently must
have different MOA-s, including (i) polar narcosis, (ii)
unselective reactivity (nucleophilic, electrophilic) or, (iii)
selective reactivity (with particular receptor molecules).
Recently, Hermens derived a rule-based system to address
the classification of toxic compounds [124]. Hermens’ rules
rely on the presence or absence of certain structural or sub-
structural features in order to assign the compounds to one
of the four classes: (i) inert chemicals or non-polar narcosis;
(ii) less inert chemicals or polar narcosis; (iii) reactive
chemicals; (iv) specifically acting compounds, such as
pesticides. The range of the possible effect concentrations for
compounds from these classes could be calculated using the
octanol-water partition coefficient of the compound.
Unfortunately, there are always compounds that do not fit
the rules and consequently cannot be classified, even if their
structural features would indicate a toxic property [125].

The hydrophobic interaction generally expressed by the
octanol-water partition coefficient (log P) has been a major
determinant of the toxic behavior of compounds [20, 126-
128]. However, with the development of structure-based
descriptors, various other descriptors have been applied
along with log P and independently to describe toxicity (see
survey of publications in reference [129]). Recently, we used
only structure-based whole molecule descriptors to correlate
the acute toxicity of 293 compounds toward Poecilia
reticulate [129]. In this study, non-polar and polar narcotics
were described mainly with log P; however other structure-
based whole molecule descriptors gave additional
improvement to the correlation equation showing their direct
utility and the importance of hydrogen bonding and polar
interaction in the case of narcosis. An even greater advantage
of whole molecule descriptors was apparent for the
unselectively (reactivity site is not known) and selectively
(reactivity site is known) reacting toxic compounds. For
those sets, step forward selection of descriptors resulted in
QSAR models with only structure-based whole molecule
descriptors that described reactive properties of the
compounds. Importantly, replacements were found for
commonly used log P for those subclasses. In comparison
with subsets, the statistical characteristics for the full set
were lower, but the descriptor content of the QSAR model
showed clearly the advantage of whole molecule descriptors
over the conventional ones.

In an earlier study of genotoxicity, we explored the
applicability of structure-based whole molecule descriptors
and the method for step forward selection of descriptors for

the description of mutagenicity in heteroaromatic amines.
The MLR study resulted in QSAR model that consists of
six descriptors, mainly of quantum-chemical origin, which
indicate the importance of hydrogen bonding, of effects
induced by the solvent, and of the size of compound [130].
The majority of QSAR models on genotoxicity involve log
P as determining descriptor of the equation. However, we
were able to show that other simpler structure-based
descriptors can be an efficient replacement for logP. A
combination of step forward selection of descriptors and
back-propagation NN improved the quality of the model
with slightly different descriptor content of the model,
indicating the possible non-linear relationship between
structural determinants and genotoxicity of the compounds
[131].

IX. GENERAL CONCLUSIONS

There is no doubt that QSAR/QSPR approaches will
gain significantly in popularity in the next years. The
increasing cost and regulatory ballast attached to
experimentation, especially when involving living systems,
together with the increasing power of modern computers and
their programs works together in this direction. Especially
the ability of modern programs to proceed, from purely
empirical selection procedures from among great numbers of
offered descriptors, to rationalizations of structural effects in
physically meaningful ways, will be much exploited. The
present review is intended as a signpost to some of the
possible directions.
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